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Any attempt to construct a realist interpretation of quantum theory founders on
the Kochen ±Specker theorem, which asserts the impossibility of assigning values
to quantum quantities in a way that preserves functional relations between them.
We construct a new type of valuation which is defined on all operators, and
which respects an appropriate version of the functional composition principle.
The truth-values assigned to propositions are (i) contextual and (ii) multivalued,
where the space of contexts and the multivalued logic for each context come
naturally from the topos theory of presheaves. The first step in our theory is to
demonstrate that the Kochen±Specker theorem is equivalent to the statement that
a certain presheaf defined on the category of self-adjoint operators has no global
elements. We then show how the use of ideas drawn from the theory of presheaves
leads to the definition of a generalized valuation in quantum theory whose values
are sieves of operators. In particular, we show how each quantum state leads to
such a generalized valuation. A key ingredient throughout is the idea that, in a
situation where no normal truth-value can be given to a proposition asserting
that the value of a physical quantity A lies in a subset D # R , it is nevertheless
possible to ascribe a partial truth-value which is determined by the set of all
coarse-grained propositions that assert that some function f (A) lies in f ( D ), and
that are true in a normal sense. The set of all such coarse-grainings forms a sieve
on the category of self-adjoint operators, and is hence fundamentally related to
the theory of presheaves.

1. INTRODUCTION

1.1. Preliminary Remarks

Anyone who has taught an introductory course on quantum theory will
have encountered the anguished disbelief that can accompany a student’ s
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first encounter with the problematic status of beliefs previously deemed to

be self-evidently true. In particular, it is difficult to remove the compelling

belief that, at any given time, any physical quantity must have a value.
In classical physics, there is no problem with this belief since the underly-

ing mathematical structure is geared precisely to express it. Specifically, if

6 is the state space of some classical system, a physical quantity A is

represented by a real-valued function A: 6 ® R ; and then the value Vs(A)

of A in any state s P 6 is simply

V s(A) 5 A(s) (1.1)

Thus all physical quantities possess a value in any state. Furthermore, if h:

R ® R is a real-valued function, a new physical quantity h(A) can be defined
by requiring the associated function h(A) to be

h(A)(s) : 5 h(A(s)) (1.2)

for all s P 6; i.e., h(A) : 5 h + A: 6 ® R . Thus the physical quantity h(A)
is defined by saying that its value in any state s is the result of applying the

function h to the value of A; hence, by definition, the values of the physical

quantities h(A) and A satisfy the `functional composition principle’

V s(h(A)) 5 h(V s(A)) (1.3)

for all states s P 6.

However, to the distress of angst-ridden students, standard quantum

theory precludes any such naive realist interpretation of the relation between

formalism and physical world. And this is not just because of some wilfully
obdurate philosophical interpretation of the theory: rather, the obstruction

comes from the mathematical formalism itself, in the guise of the famous

Kochen±Specker theorem, which asserts the impossibility of assigning values

to all physical quantities while at the same time preserving the functional

relations between them (Kochen and Specker, 1967).3

In a quantum theory, a physical quantity A is represented by a self-
adjoint operator AÃon the Hilbert space of the system, and the first thing one

has to decide is whether to regard a valuation as a function of the physical

quantities themselves, or on the operators that represent them. From a mathe-

matical perspective, the latter strategy is preferable, and we shall therefore

define a (global) valuation to be a real-valued function V on the set of all

bounded, self-adjoint operators, with the properties that (i) the value V(AÃ) of
the physical quantity A represented by the operator AÃbelongs to the spectrum

3 As has been emphasized by Brown (1992), the essential result is already contained in Bell’ s
seminal first paper on hidden variables (Bell, 1987).
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of AÃ(the so-called `value rule’ ) and (ii) the functional composition principle

(or FUNC for short) holds:

V(BÃ) 5 h(V(AÃ)) (1.4)

for any pair of self-adjoint operators AÃ, BÃsuch that BÃ5 h(AÃ) for some real-

valued function h. If they existed, such valuations could be used to embed

the set of self-adjoint operators in the commutative ring of real-valued func-

tions on an underlying space 6 of microstates, thereby laying the foundations

for a hidden-variable interpretation of quantum theory.
Several important results follow from the definition of a valuation. For

example, if AÃ1 and AÃ2 commute, there exists an operator CÃand functions h1

and h2 such that AÃ
1 5 h1(CÃ) and AÃ

2 5 h2(CÃ); it then follows from FUNC that

V(AÃ1 1 AÃ2) 5 V(AÃ1) 1 V(AÃ2) (1.5)

and

V(AÃ1 AÃ2) 5 V(AÃ1)V(AÃ2) (1.6)

The defining equation (1.4) for a valuation makes sense whatever the

nature of the spectrum s (AÃ) of the operator AÃ. However, if s (AÃ) contains a

continuous part, one might doubt the physical meaning of assigning one of
its elements as a value; indeed, in the present paper, we shall consider

valuations in this sense as being defined only on the subset of operators

whose spectrum is purely discrete. To handle the more general case, we shall

reconceive a valuation as primarily giving truth-values to propositions about

the values of a physical quantity, rather than assigning a specific value to

the quantity itself.
The propositions concerned are of the type `A P D ,’ which asserts that

the value of the physical quantity A lies in the Borel subset D of the spectrum

s (AÃ) of the associated operator AÃ. Of course, such assertions are meaningful

for both discrete and continuous spectra, which motivates studying the general

mathematical problem of assigning truth-values to projection operators.

If PÃis a projection operator, the identity PÃ5 PÃ2 implies that V(PÃ) 5
V(PÃ2) 5 (V(PÃ))2 [from (1.6)]; and hence, necessarily, V(PÃ) 5 0 or 1. Thus

V defines a homomorphism from the Boolean algebra {0Ã, 1Ã, PÃ, Ø PÃ[ (1Ã2 PÃ)}
to the `false(0)±true(1)’ Boolean algebra {0, 1}. More generally, a valuation

V induces a homomorphism x V: W ® {0, 1}, where W is any Boolean

subalgebra of the lattice 3 of projectors on *. In particular,

a Ã# b Ã implies x V( a Ã) # x V( b Ã) (1.7)

where ` a Ã# b Ã’ refers to the partial ordering in the lattice 3, and ` x V( a Ã) #
x V( b Ã)’ is the ordering in the Boolean algebra {0, 1}. This result has an

important implication for us, to which we shall return shortly.
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The Kochen±Specker theorem asserts that no global valuations exist if

the dimension of the Hilbert space * is greater than two. The obstructions

to the existence of such valuations typically arise when trying to assign a

single value to an operator CÃthat can be written as CÃ5 g(AÃ) and as CÃ5
h(BÃ) with [AÃ, BÃ] Þ 0.

One response to this result is to note that the theorem does not preclude

the existence of `partial’ or `local` valuationsÐ i.e., valuations that are defined

only on some subset of the set of self-adjoint operators; a typical example

would be any complete set of commuting operators on the Hilbert space.

However, if partial valuations are to form part of a proper interpretative

framework, the question immediately arises as to how the domain of any

such valuations is to be chosen.

The extant interpretations of quantum theory that aspire to use `beables’

rather than `observables’ are all concerned in one way or another with

addressing this issue. One well-known approach is that of Bohm, where

certain physical quantitiesÐ for example, the position of a particleÐ are

declared by fiat to be those that always have a value. In other, so-called

`modal’ approaches, the domain of a partial valuation depends on the quantum

state, as, for example, in the works of van Fraassen (1981, 1991), Kochen

(1985), Healey (1989), Clifton (1995), Dieks (1995), Vermaas and Dieks

(1995), Bacciagaluppi and Hemmo (1996), and Bub (1997).

Inherent in such schemes is a type of `contextuality’ in which a value

ascribed to a physical quantity C cannot be part of a global assignment of

values, but must instead depend on some context in which C is to be consid-

ered. In practice, contextuality is endemic in any attempt to ascribe properties

to quantities in a quantum theory. For example, as emphasized by Bell (1987),

in the situation where CÃ 5 g(AÃ) 5 h(BÃ), if the value of C is construed

counterfactually as referring to what would be obtained if a measurement of

A or B is madeÐ and with the value of C then being defined by applying

the relation C 5 g(A), or C 5 h(B), to the result of the measurementÐ then

one can claim that the actual value obtained depends on whether the value

of C is determined by measuring A or by measuring B.

In the program to be discussed here, the idea of a contextual valuation

will be developed in a different direction from that of the existing modal

interpretations. In particular, rather than accepting only a limited domain of

beables, we shall propose a theory of `generalized’ valuations that are defined

globally on all propositions about value of physical quantities. However, the

price of global existence is that any given proposition may have only a

`partial’ truth-value. More precisely, (i) the truth value of a proposition `A P
D ’ belongs to a logical structure that is larger than {0, 1}, and (ii) these

target logics are context dependent.
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It is clear that the main task is to formulate mathematically the idea of

a contextual, `partial’ truth-value in such a way that the assignment of general-

ized truth-values is consistent with an appropriate analogue of the functional
composition principle FUNC. The scheme also has to have some meaningful

physical interpretation; in particular, we want the set of all possible partial

truth-values for any given context to form some sort of distributive logic, in

order to facilitate a proper semantics for this `neorealist’ view of quantum

theory.

1.2. Generalized Logic in Quantum Physics

Our central idea is that, although in a given situation in quantum theory

it may not be possible to declare a particular proposition `A P D ’ to be true

(or false), nevertheless there may be functions f such that the associated

propositions `f (A) P f ( D )’ can be said to be true. This possibility arises for
the following reason.

Let WA denote the spectral algebra of the operator AÃthat represents a

physical quantity A: thus WA is the Boolean algebra of projectors EÃ[A P D ]

that project onto the eigenspaces associated with the Borel subsets D of the

spectrum s (AÃ) of AÃ; physically speaking, EÃ[A P D ] represents the proposition

`A P D .’ It follows from the spectral theorem that, for all Borel subsets J
of the spectrum of f (AÃ), the spectral projector EÃ[ f (A) P J ] for the operator

f (AÃ) is equal to the spectral projector EÃ[A P f 2 1(J )] for AÃ. In particular, if

f ( D ) is a Borel subset of s ( f (AÃ)) (which is automatically true if the spectrum

of AÃis discrete; we shall discuss the non-discrete case later) then, since D #
f 2 1( f ( D )), we have EÃ[A P D ] # EÃ[A P f 2 1( f ( D ))]; and hence

EÃ[A P D ] # EÃ[ f (A P f ( D )] (1.8)

Physically, this inequality reflects the fact that the proposition `f (A) P f ( D )’

is generally weaker than the proposition `A P D ’ in the sense that the latter

implies the former, but not necessarily vice versa. For example, the proposition

`f (A) 5 f (a)’ is weaker than the original proposition `A 5 a’ if the function
f is many-to-one and such that more than one eigenvalue of AÃis mapped to

the same eigenvalue of f (AÃ). In general, we shall say that `f (A) P f ( D )’ is

a coarse-graining of `A P D .’

Now if the proposition `A P D ’ is evaluated as `true’ by, for example,

a partial valuation V of the type mentioned at the end of Section 1.1Ð so

that V(EÃ[A P D ]) 5 1Ð then, from (1.7) and (1.8), it follows that the weaker
proposition `f (A) P f ( D )’ is also evaluated as `true.’

This remark provokes the following observation. There may be situations

in which, although the propositon `A P D ’ cannot be said to be either true

or false, the weaker proposition `f (A) P f ( D )’ can be. In particular, if the
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latter can be given the value `true’ in an unequivocal sense, thenÐ by virtue

of the remark aboveÐ it is natural to suppose that any further coarse-graining

to give an operator g( f (AÃ)) will yield a proposition `g( f (A)) P g( f ( D ))’ that
also is to be evaluated as `true.’ Note that there may be more than one

possible choice for the `initial’ function f, each of which can then be further

coarse-grained in this way. This multibranched picture of coarse-graining is

one of the main justifications for our invocation of the topos-theoretic idea

of a presheaf.

In fact, guided by the remarks above, the procedure we shall adopt in
Section 3 is first to consider partial valuationsÐ which assign values in a

standard way, but are defined on less than all the operatorsÐ and then to go

on to define the partial truth-value (associated with each partial valuation V )

of any proposition `A P f ( D )’ to be the set of all operators BÃof the form

BÃ5 f (AÃ) which are in the domain of V and such that the weaker proposition

`f (A) P f ( D )’ is `totally true’ Ð i.e., it is assigned the unit in the logic of
partial truth-values.

We shall then generalize this idea in Section 4, where we extract the

key properties of these partial truth-values and use them to formulate a

definition of a `generalized valuation,’ the semantic interpretation of which

is that the truth-value of a proposition `A P D ’ is a set of coarse-grained
propositions `f (A) P f ( D )’ each of which can be regarded as being totally true.

As we shall show, any quantum state gives rise to such a generalized valuation.

The key property of such a generalized truth-value is that it is a sieve
in a certain category formed from the self-adjoint operators on the Hilbert

space of the systemÐ and it is a fundamental property of sieves that they

form a Heyting algebra, and hence have the structure of a distributive logic;
albeit one that is intuitionistic, not classical, in the sense that the logical law

of excluded middle is replaced with the weaker condition a Ú Ø a # 1. These

sieves are associated with a certain presheafÐ the `spectral presheaf ’ Ð that

is naturally associated with any quantum theory: this is how ideas from topos

theory enter our scheme.

This procedure was partly motivated by an earlier paper in which topos
ideas were applied to the consistent-histories approach to quantum theory

(Isham, 1997); in particular, it was shown there how a topos framework fits

naturally with the multibranched, coarse-graining operations that play a cen-

tral role in the construction of consistent sets of propositions. Contextuality

arises explicitly there as the need to choose a particular consistent set of

histories; and, in fact, topos-theoret ic ideas can be expected to arise naturally
in any physical theory where contextuality plays a central role. Presheaves

are particularly important in this respect since they are naturally associated

with contextual, generalized truth-values given by the so-called `subobject

classifier.’
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Another motivation for our procedure is more general and conceptual.

In short, it represents a via media between two extremes in the semantics, or

interpretation, of quantum theory. For, on the one hand, the Kochen±Specker
theorem shows the impossibility of sustaining any naive realist interpretation

of quantum theory in which propositions about the values of physical quanti-

ties are handled with the simple type of Boolean logic which is characteristic

of, for example, the set of subsets of a classical state space. And, on the

other hand, we believe that the `logical’ structure inherent in the lattice of

projection operators that represent quantum propositions mathematically is
too nonclassicalÐ in particular, it is nondistributiveÐ to fulfill any genuine

semantic role. [This is a well-known viewpoint; for example, see Dummett’ s

(1978) critique of Putnam’ s (1975) proposal to ª read the logic off Hilbert

space.º ] Our aim is to find a middle path between these extremes with the

aid of logical structures that are certainly not just simple Boolean algebrasÐ

our logics are contextual and intuitionisticÐ but which retain the semantically
crucial property of distributivity. We hope that this intermediate position will

extend a little our encompassing of `quantum reality.’

1.3. Some Expected Properties of Generalized Truth-Values

To further motivate the detailed constructions that will be made in this
paper, it is helpful at this stage to consider what can be said ab initio about

the assignment of partial truth-values. For example, presumably the minimum

that should be satisfied by the analogue of FUNC is that if BÃ5 h(AÃ), and

if the proposition `A P D ’ is assigned the value `totally true,’ then the

proposition `B P h( D )’ should also be `totally true.’ As we shall see, this

requirement is implemented in a simple way in the presheaf framework that
we employ.

A central problem in handling multivalued truth-values is to understand

how the internal mathematical operations of the `target’ logic are to be related

to the logical structure of the propositions being evaluated. More precisely,

let L denote the Boolean algebra of all propositions of the type `A P D ’ for

some fixed physical quantity A, and suppose we have some assignment of
partial truth-values, n : L ® T(L), where T(L) is the target logic in the context

of L. Then how should the structure of L be reflected in the properties of n
and the logical structure of T(L)? For example, is n some type of algebraic

homomorphism, etc.? The minimum that can be said in this direction would

seem to be the following.

First, the null proposition corresponding to the zero element 0L P L
should presumably always be valued as totally false; and hence we expect

n (0L) 5 0T(L) in all contexts.

Second, if a , b P L are such that a # b , then the physical interpretation

is that the proposition a implies the proposition b ; an example is `A P D 1’
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and `A P D 2,’ respectively, with D 1 # D 2. Under these circumstances, the

analogy with (1.7) suggests that the generalized truth-values should satisfy

n ( a ) # n ( b ) in the target logic T(L). In what follows, we shall refer to this
central requirement as the `monotonicity’ condition.

Now, for any a , b P L, we have a # a Ú b and b # a Ú b ; hence it

follows from monotonicity that n ( a ) # n ( a Ú b ) and n ( b ) # n ( a Ú b ). This

implies that, in the logic T(L),

n ( a ) Ú n ( b ) # n ( a Ú b ) (1.9)

if we assume that the `or ’ operation in the target logic T(L) behaves as

expected, i.e., it is the least upper bound for the partial ordering.

One might wonder if the stronger disjunctive rule n ( a Ú b ) 5 n ( a ) Ú
n ( b ) holds, but, on reflection, this is at variance with certain key ideas of

quantum theory. For example, suppose that a and b are the propositions

`A 5 a1’ and `A 5 a2,’ respectively, with a1 Þ a2. Then the projection
operators that represent these propositions project onto the eigenstates of AÃ

corresponding to the eigenvalues a1 and a2, respectively. However, in the

lattice of projectors, the disjunction of these operators projects onto the two-

dimensional space spanned by these eigenvectors, which is strictly bigger
than the union of the pair of one-dimensional spaces (which, indeed, is not
a linear subspace at all). Hence a generalized truth-value n ( a Ú b ) of a Ú b
might be greater (in the logical sense) than the disjunction of the generalized

truth-values of a and b separately. We shall see in several concrete examples

that this is indeed the case.

Similarly, for any a , b P L, we have a Ù b # a and a Ù b # b , so

that, by monotonicity, n ( a Ù b ) # n ( a ) and n ( a Ù b ) # n ( b ). Assuming that
the `and’ operation ` Ù ’ in the target logic T(L) behaves as expectedÐ i.e., is

the greatest lower bound for the partial orderingÐ it follows that

n ( a Ù b ) # n ( a ) Ù n ( b ) (1.10)

Here also, one might wonder if a stronger conjunctive rule n ( a Ù b ) 5 n ( a )

Ù n ( b ) holds; but we can see at once that it cannot do so in any scheme in
which `blurred’ truth-values occur. For example, suppose once more that a
and b are the propositions `A 5 a1’ and `A 5 a2,’ respectively, with a1 Þ
a2. Then, as explained earlier, our key idea is to assign a partial truth-value

to a proposition like `A 5 a’ by finding a `coarse-grained’ operator BÃ5
f (AÃ) such that the weaker proposition `f (A) 5 f (a)’ is totally true. One

consequence is that, even though the propositions `A 5 a1’ and `A 5 a2’ are
disjointÐ so that a Ù b 5 0Ð this does not imply that n ( a ) Ù n ( b ) is totally

false: all that is needed is an operator BÃ5 f (AÃ) with f (a1) 5 f (a2) and such

that `f (A) 5 f (a1)’ is totally true. In this circumstance, the strict inequality

holds in (1.10).
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The monotonicity rule requires supplementing in one respect. Consider

again the propositions `A 5 a1’ and `A 5 a2’ with a1 Þ a2, and suppose the

generalized valuation is such that n (A 5 a1) 5 1T(L), i.e., the proposition
`A 5 a1’ is totally true in the logic T(L). Then it seems natural to require

that the disjoint proposition `A 5 a2’ cannot also be totally true, even though

it need not be totally false either. However, for the following reason, this

restrictionÐ which we shall refer to as `exclusivity’ Ð cannot be deduced

from the monotonicity condition.

The disjointness condition a Ù b 5 0 in the Boolean algebra L implies
that b # Ø a ; hence, using monotonicity,

n ( b ) # n ( Ø a ) (1.11)

Now, if we assumed that n : L ® T(L) commutes with the negation operation,

in the sense that

n ( Ø a ) 5 Ø n ( a ) (1.12)

then (1.11) plus the hypothesis n ( a ) 5 1T(L) would imply that n ( b ) # Ø n ( a )

5 Ø 1T(L) 5 0T(L); hence n ( b ) 5 0T(L), which certainly satisfies exclusivity.

However, it turns out that the equality (1.12) is precisely what cannot be

assumed in our theory since, as we shall see later, the target logic for the

generalized truth-values is a Heyting algebra, and the negation operation in
an intuitionistic logic of this type behaves differently from that in a Boolean

algebra. As a result, the exclusivity condition cannot be derived from mono-

tonicity, and it must therefore be added as an extra requirement.

Putting all these remarks together, we arrive at the following tentative

minimal list of algebraic properties that we expect to be satisfied by a

generalized valuation n : L ® T(L) of a Boolean logic L:

Null condition: n (0L) 5 0T(L) (1.13)

Monotonicity: a # b implies n ( a ) # n ( b ) (1.14)

Exclusivity: If a Ù b 5 0L and n ( a ) 5 1T(L), then n ( b ) , 1T(L)

(1.15)

As we shall see, the examples of generalized valuations in quantum theory

given in this paper satisfy these requirements. Another condition that we

might want to add is

Unit condition: n (1L) 5 1T(L) (1.16)

which, as we shall see, is also satisfied by the valuations associated with

quantum states. On the other hand, it can be violated by the generalized

valuations that are associated with partial valuations (mentioned in Section

1.2). We shall see this explicitly in Section 3.4.
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1.4. Prospectus

The plan of the paper is as follows. In Section 2, we shall show how

the Kochen±Specker theorem can be viewed as asserting the nonexistence
of global sections of certain presheaves that are naturally associated with

any quantum theory. A key ingredient here is the idea that the set of all

bounded, self-adjoint operators forms an appropriate category on which to

form presheaves, as does the set of all Boolean subalgebras of projectors.

Readers unfamiliar with topos theory may find it helpful to read the Appendix
before embarking on this section.

By rewriting the Kochen±Specker theorem in terms of presheaves, sev-

eral ways of generalizing the idea of a valuation present themselves. In this

paper we pursue one particular scheme: to motivate the definition we finally

arrive at, we show in Section 3 how a partial valuation (of the type used in

the extant modal interpretations of quantum theory) gives rise to a generalized
valuation whose truth-values lie in the Heyting algebra of sieves on an object

in the category of self-adjoint operators. By these means, we arrive naturally

at contextualized, multivalued truth-value assignments.

Then, in Section 4 we use these results to motivate the formal definition

of a generalized valuation, and we show how any state in a quantum theory

gives rise to one such. In Section 5, we extend these ideas to the case where
the space of contexts is taken as the category of all Boolean subalgebras of

projectors, rather than the category of self-adjoint operators.

This paper is intended to be the first in a series devoted to an extensive

analysis of the possible uses of topos ideas in quantum theory. Our main aim

in the present paper is to present the basic mathematical tools and some

general ideas about using quantum states to produce generalized valuations,
but this leaves much work to be done: in particular, an analysis of the

philosophical implications of generalized truth-values will be given in a future

paper, as will the way in which similar ideas can arise in classical physics

(Butterfield and Isham, 1998). For this reason, the present paper concludes

with a short summary of what has been achieved so far and a list of some
of the more significant topics for further research.

2. THE KOCHEN± SPECKER THEOREM IN THE LANGUAGE
OF TOPOS THEORY

2.1. The Categories of Boolean Algebras and Self-Adjoint Operators

A key step in formulating the Kochen±Specker theorem in the language

of topos theory is the construction of several categories that will form the

domains of the presheaf functors we shall be using later. Readers unfamiliar

with topos theory may find it helpful to read the Appendix first. This contains
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a short introduction to the relevant parts of topos theory, particularly the theory

of presheaves and the associated use of sieves as generalized truth values.

We start with the set 0 of all Boolean subalgebras of the lattice 3(*)
of projection operators on the Hilbert space * of the quantum system. This

forms a poset under subalgebra inclusion, W2 # W1. As with any poset, 0
can be regarded as a category in which (i) the objects are defined to be the

elements W P 0 of the poset and (ii) a morphism is defined to exist from

W2 to W1 if W2 # W1; we shall write this morphism as iW
2
W

1
: W2 ® W1.

Thus there is at most one morphism between any two objects.
The next step is to introduce the set 2 of all bounded, self-adjoint

operators on the Hilbert space *. First, recall that any such operator AÃhas

the spectral representation4

AÃ5 # s (AÃ)

l dEÃA
l (2.1)

where s (AÃ) , R is the spectrum of AÃ, and {EÃA
l ) l P s (AÃ)} is the spectral

family of AÃ. The spectral projection operators EÃ[A P D ] are determined by

the spectral family according to

EÃ[A P D ] 5 # D

dEÃA
l (2.2)

where D is any Borel subset of the spectrum of AÃ. In particular, if a belongs
to the discrete spectrum of AÃ, the projector onto the eigenspace with eigenvalue

a is

EÃ[A 5 a] : 5 EÃ[A P {a}] (2.3)

Then, if f : R ® R is any bounded Borel function, the operator f (AÃ) is
defined by

f (AÃ) : 5 # s (AÃ)

f ( l )dEÃA
l (2.4)

Note that if functions f and g exist such that BÃ5 f (AÃ) and BÃ5 g(AÃ), this

does not imply that f and g are equal. In the discrete case it means only that

their restrictions to s (AÃ) are equal; more generally, measure-theoretic issues
arise, and we shall define two bounded Borel functions f, g: s (AÃ) ® R to

be equivalent if f (AÃ) 5 g(AÃ).
We are now ready to turn 2 into a category. We define the objects to

be the elements of 2, and we say that there is a `morphism’ from BÃto AÃif

4 As usual, the expression in (2.1) is shorthand for the equation ^ c , A f & 5 * l d ^ c , E l f & for
all c , f P *, whose right-hand side is to be interpreted as a Stieltjes integral. A similar
remark applies to the integrals in (2.2) and (2.4).
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there exists a Borel function (more precisely, an equivalence class of Borel

functions) f : s (AÃ) ® R such that BÃ5 f (AÃ). As implied above, any such

function on s (AÃ) is unique (up to the equivalence relation), and hence there
is at most one morphism between any two operators; if such exists, i.e., if

BÃ5 f (AÃ), for some f : s (AÃ) ® R , then the corresponding morphism in the

category 2 will be denoted f2: BÃ® AÃ. Note that we could make the correspond-

ing definitions for any subset of 2 that it is closed under the action of

constructing functions of its members. In what follows, we shall be especially

concerned with the category 2d of all bounded self-adjoint operators whose
spectra are discrete.

The categories 0 and 2 are closely related5 via a certain covariant

functor W: 2 ® 0:

Definition 2.1. The spectral algebra functor is the covariant functor W:

2 ® 0 defined as follows:

x On objects: W(AÃ) : 5 WA, where WA is the spectral algebra of the

operator AÃ[i.e., the collection of all projectors onto the subspaces

of * associated with Borel subsets of s (AÃ)].

x On morphisms: If f2: BÃ® AÃ, then W( f2): WB ® WA is defined as

the subset inclusion iWBWA: WB ® WA.

In defining the map W( f2): WB ® WA we have exploited the fact that

the spectral algebra for BÃ5 f (AÃ) is naturally embedded in the spectral algebra

for AÃaccording to the result EÃ[ f (A) P J ] 5 EÃ[A P f 2 1(J )], for all Borel

subsets J # s (BÃ). Rigorously speaking, we could write iW f (A)W (EÃ[ f (A) P J ])

5 EÃ[A P f 2 1(J )].

Note that we have defined f2 to be a morphism from BÃto AÃÐ rather
than from AÃto BÃÐ so as to ensure that the categories 2 and 0 match up

in this way. One consequence of this choice is the reversal of arrows in

the equation

f2 + g2 5 (g + f )2 (2.5)

where the left-hand side denotes composition in the category 2, and the right-
hand side denotes normal composition of functions, so that if BÃ5 f (AÃ) and

CÃ5 g(BÃ), the functional relation CÃ5 g( f (AÃ)) [ g + f (AÃ) translates to the

morphism f2 + g2: CÃ® AÃin the category 2.

It should be noted that pairs of operators AÃÞ BÃexist such that BÃ5
f (AÃ) and AÃ5 g(BÃ) for suitable functions f and g. In the category 2, these

relations become f2: BÃ® AÃand g2: AÃ® BÃ, with

5 Another, closely related, category has as its objects the abelian subalgebras of the algebra of
bounded, self-adjoint operators. The fact that this can be regarded as a category was mentioned
in the original paper of Kochen and Specker (1967).
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g2 + f2 5 idB; f2 + g2 5 idA (2.6)

One consequence of the existence of such pairs is that 2 is only a pre-ordered

space since it lacks the antisymmetry property6 of a true poset (which 0 is).

However, it follows from (2.6) that two such operators are isomorphic objects

in the category 2, and it is therefore possible to construct a new category

[2] whose objects are the equivalence classes of operators, where two opera-

tors are regarded as being equivalent if they are isomorphic as objects in 2.
Finally, we note that if AÃand BÃare related as in (2.6), then they have the

same spectral algebras, i.e., WA 5 WB, and hence [2] is closely related to

the category 0.

2.2. The Spectral Presheaf on 2d and the Kochen ± Specker Theorem

A central step in developing our use of topos theory is the observation

that the spectra of the self-adjoint operators on a Hilbert space can be used

to form a presheaf on the category 2d of self-adjoint operators whose spectra

are discrete. Specifically:

Definition 2.2. The spectral presheaf on 2d is the contravariant functor

S : 2d ® Set defined as follows:

1. On objects S (AÃ) : 5 s (AÃ), the spectrum of the self-adjoint operator AÃ.
2. On morphisms: If f2d: BÃ® AÃ, so that BÃ5 f (AÃ), then S ( f2d): s (AÃ) ®

s (BÃ) is defined by S ( f2d)( l ) : 5 f ( l ) for all l P s (AÃ).

Note that S ( f2d) is well defined since, if l P s (AÃ), then f ( l ) is indeed

an element of the spectrum of B; indeed, for these discrete-spectrum operators

we have s (BÃ) 5 f ( s (AÃ)).
It is straightforward to see that S is a genuine functor. It clearly respects

domains and codomains of a morphism in 2d in the desired way, and S (idA) 5
id s (A). The key step is to show that S ( f2d + g2d) 5 S (g2d) + S ( f2d). So, suppose

that f2d: BÃ® AÃand g2d: CÃ® BÃ, so that BÃ5 f (AÃ) and CÃ5 g(BÃ). Then f2d

+ g2d: CÃ® AÃwith CÃ5 g( f (AÃ)) 5 g + f (AÃ). Hence, for all l P s (AÃ), we have

S ( f2d + g2d)( l ) 5 g( f ( l )) 5 S (g2d)( f ( l ))

5 S (g2d)( S ( f2d)( l )) 5 S (g2d) + S ( f2d)( l ) (2.7)

so that

S ( f2d + g2d) 5 S (g2d) + S ( f2d) (2.8)

as required. Thus S is a contravariant functor from 2d to Set, and hence a

presheaf on 2d .

6 A pre-ordered set X is said to have the antisymmetry property if x # y and y # x implies
x 5 y.
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The key remark now is the following. As discussed in Appendix A, a

global section, or global element, of a contravariant functor X: # ® Set is

defined to be a function g that assigns to each object A in the category #
an element g A P X(A) in such a way that if f : B ® A, then X( f )( g A) 5 g B,

as in (A.22).

In the case of the spectral functor S : 2d ® Set, a global section/element

is therefore a function g that assigns to each self-adjoint operator AÃwith a

purely discrete spectrum, a real number g A P s (AÃ) such that if BÃ5 f (AÃ),
then f ( g A) 5 g B. But this is precisely the condition FUNC in (1.4) for a
valuation! Thus, for operators with a discrete spectrum, the Kochen±Specker

theorem is equivalent to the statement that, if dim * . 2, there are no global

sections of the spectral presheaf S : 2d ® Set.

The situation for operators whose spectra contains continuous parts is

more complex since it is no longer necessarily true that s ( f (AÃ)) 5 f ( s (AÃ).
Indeed, the most that can be proved in general is that (cf. Dunford and
Schwartz, 1964, p. 900)

s ( f (AÃ)) 5 ù
D

{ f ( D ) ) EÃ[A P D ] 5 1Ã} (2.9)

where f ( D ) is the topological closure of f ( D ) , R , and D denotes Borel
subsets of R . The idea of the spectral presheaf can be extended to this case

by using a more sophisticated approach that involves the spectral theorem

for commutative von Neumann algebras. However, we shall not develop this

particular approach further in the present paper because of the problematic

physical meaning of assigning an exact value to a quantity whose range of

values is continuous. Of much greater relevance is the assignment of truth-
false values to propositions of the type `A P D ’ , as discussed in Section 1

and in the original Kochen±Specker paper: as we shall see shortly in Section

2.3, the relevant presheaf in this case can be defined for the category 2 of

all bounded self-adjoint operators on the Hilbert space of the quantum system.

Note that, in the form above, the Kochen±Specker theorem looks remark-

ably like the theorem in fiber-bundle theory which says that there are no
global cross sections of a nontrivial principal bundle (Singer, 1978). Thus,

cum grano salis, one might be tempted to say that the Kochen±Specker

theorem in quantum theory is analogous to the `Gribov effect’ in Yang±Mills

gauge theories (which arises from the nontriviality of the gauge bundle)!

More seriously, the nontriviality of a principal fiber bundle is related

to the existence of certain nonvanishing cohomology classes that arise as
obstructions to the stepwise construction of a cross section on the simplices

of a locally trivializing triangulation of the base manifold. It would be intri-

guing to see if the nonexistence of global valuations in the quantum theory

can be related to the nonvanishing of some topos-based cohomology structure.
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If so, this would open an perspective on the Kochen±Specker theorem that

would be extremely interesting, not least because most of the literature on

the theorem is concerned with finding concrete counterexamples to the exis-
tence of a global valuation rather than studying the phenomenon in a gen-

eral sense.

However, from our immediate perspective the most important reason for

presenting this topos-theoret ic restatement of the Kochen±Specker theorem is

that, as we shall see, it suggests specific ways of implementing the idea

of constructing generalized valuations, particularly in regard to using the
contextual logic that forms the heart of the theory of presheaves.

2.3. The Kochen ± Specker Theorem in Terms of the Dual Presheaves
on 0 and on 2

2.3.1. The Dual Presheaf on 0

The Kochen±Specker theorem is often stated in terms of the features
of a valuation on the Boolean subalgebras of the lattice 3(*) of projectors

on the Hilbert space *. This is useful for handling operators whose spectra

contain continuous parts; and it is also the starting point for most constructions

of explicit counterexamples to the existence of global valuations. For these

reasons, it is useful to restate the results above using the category 0 rather

than 2d . This will enable us in Section 2.3.2 to state the Kochen±Specker
theorem in terms of the category 2 of all bounded self-adjoint operators.

Once again we start with the definition of an appropriate presheaf; this

time on the category 0.

Definition 2.3. The dual presheaf on 0 is the covariant functor D:

0op ® Set defined as follows:

1. On objects: D(W ) is the dual of W; thus it is the set Hom(W, {0, 1})
of all homomorphi sms from the Boolean algebra W to the Boolean

algebra {0, 1}.

2. On morphisms: If iW2W1: W2 ® W1, then D(iW2W1): D(W1) ® D(W2)

is defined by D(iW2W1)( x ) : 5 x ) W2, where x ) W2 denotes the restriction

of x P D(W1) to the subalgebra W2 # W1.

A global section of the functor D: 0op ® Set is then a function g that

associates to each W P 0 an element g W of the dual of W such that if

iW2W1: W2 ® W1, then g W1 ) W2 5 g W2; thus, for all a ÃP W2,

g W2( a Ã) 5 g W1((iW2W1( a Ã)) (2.10)

Since each projection operator belongs to at least one Boolean algebra

(for example, the algebra {0Ã, 1Ã, a Ã, Ø a Ã}), it follows that a global section of
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D: 0op ® Set associates to each projection operator a Ãa number V( a Ã) which

is either 0 or 1, and is such that, if a ÃÙ b Ã5 0Ã, then V( a ÃÚ b Ã) 5 V( a Ã) 1
V( b Ã). These are precisely the types of valuation considered in the discussion
of the Kochen±Specker theorem that focus on the construction of specific

counterexamples. Thus an alternative way of expressing the Kochen±Specker

theorem is that, if dim * . 2, the dual presheaf D: 0op ® Set has no

global sections.

2.3.2. The Dual Presheaf on 2

The covariant functor W: 2 ® 0 of Definition 2.1 and the contravariant
functor D: 0 ® Set can be composed to give a contravariant functor D +
W: 2 ® Set, which we shall call the dual presheaf on 2. It has the follow-

ing properties:

1. On objects D + W(AÃ) is the dual of the spectral Boolean algebra

WA; thus it is the set Hom(WA, {0, 1}) of all homomorphi sms from

WA to the Boolean algebra {0, 1}.

2. On morphisms: If f2: BÃ® AÃ, then D + W( f2): D(WA) ® D(WB) is

defined by D + W( f2)( x ) : 5 x ) W f (A), where x ) Wf (A) denotes the restric-
tion of x P D(WA) to the subalgebra W f (A) # WA.

Note that a global section g of the presheaf D + W: 2 ® Set would

correspond to a consistent association of each physical quantity A with an

element g A P Hom(WA, {0, 1}), and hence with a statement of which proposi-

tions of the form A P D are true and which are false. The nonexistence of

such global sections is perhaps the most physically transparent statement of
the Kochen±Specker theorem in the language of presheaves.

Finally, we note that, as might be expected, there is a close relationship

between the spectral presheaf S on 2d and the corresponding dual presheaf

D + W on 2d . Specifically, there is a natural transformation T: S ® D + W
between these presheaves, whose component TA: S (AÃ) ® D + W(AÃ) at each

stage AÃP 2d ,

TA: s (AÃ) ® Hom(WA, {0, 1}) (2.11)

is defined by [where l P s (AÃ)]

TA( l )(EÃ[A P D ]) : 5 H 1 if l P D
0 otherwise

(2.12)

for all projection operators EÃ[A P D ] P WA.



A Topos Perspective on Kochen ± Specker Theorem 2685

3. FROM PARTIAL VALUATIONS TO GENERALIZED
VALUATIONS

3.1. Some Implications of the Presheaf Version of the
Kochen ± Specker Theorem

We are now ready to begin the presentation of our theory of generalized

valuations. From a pedagogical perspective, this could be done in several

ways. One possibility would be to start with the formal definition and then

to exhibit some physically relevant examples. However, although the defini-
tion of a generalized valuation is partly motivated by the conclusions of our

earlier discussion in Section 1.3, one of the central componentsÐ the presheaf

analogue of the functional composition principle FUNCÐ is best justified

by seeing how it arises in a particular case. Therefore, we shall devote this

section to a fairly extensive discussion of a concrete example of a particular

class of generalized valuation that will serve to illustrate the ideas that lie
behind our later, more abstract constructions in Sections 4 and 5.

As we have seen, the Kochen±Specker theorem asserts that, if dim * .
2, there do not exist valuations that are globally defined in the sense that

FUNC is satisfied for all pairs of operators AÃ, BÃin the Hilbert space with

BÃ5 f (AÃ) for some f; or, in the language of topos theory, the spectral presheaf
S : 2d ® Set has no global sections. More generally, the theorem asserts that

there are no global sections of the dual presheaf D + W on 2, and hence

there is no consistent way of assigning the values true or false to propositions

of the type `A P D ’ for all physical quantities A.

Rewriting the Kochen±Specker theorem in the language of topos theory

suggests several ways in which the idea of a valuation might be generalized
so that globally defined entities do exist. For example, one possibility is to

embed the spectral presheaf S in a larger presheaf that does have global

elements. The existence of at least one such presheaf follows from some

general considerations in topos theory7: in the present case, a relevant example

is the presheaf on 2 whose objects are subsets of s (AÃ) at each stage of truth

AÃ. A global section of this presheaf would comprise a consistent assignment
of a range of values for each physical quantity. This option sounds physically

plausible, and is something to which we may return in a later paper.

Another possibility is to replace the dual presheaf D + W on 2 with a

presheaf H in which H(AÃ) is defined to be the set of homomorphi sms from

WA into some larger algebra than the {0, 1} used by D + W, thus building in

the idea of multivalued truth in a rather direct way. Of course, guided by our
remarks in the Introduction, this target logic could itself depend on the stage

of truth AÃ(i.e., it could be contextual), and it is not clear that we would want

7 The existence of injective resolutions of a presheaf.
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to use genuine homomorphisms; for example, if the target algebra was an

intuitionistic logic, then the negation operation would behave differently from

that in WA, as was mentioned briefly in the Introduction in the context of the
(incorrect!) equation (1.12). We shall see an example of this type of structure

in Section 5 in the form of the `valuation presheaf ’ of Definition 5.2.

However, in this section, we will take our departure from the property

of presheaves that even if a global section/element does not exist, typically

there will be plenty of local sections (just as there are in a nontrivial principal

bundle), which are defined to be morphisms of a subobject of the terminal
object into the presheaf. In the case of the spectral presheaf S , any such

local element corresponds to what we shall call a `partial’ valuation, and the

main thrust of this section of the paper is to show how each such locally

defined normal valuation (`normal’ in the sense that assigned values lie in the

minimal Boolean algebra {0, 1}) gives rise to a globally defined `generalized’

valuation with truth-values in the Heyting algebra of sieves on 2. This also
allows comparison to be made with the various modal approaches to the

interpretation of quantum theory, all of which use local valuations of one

type or another; however, we shall not pursue that comparison in this paper.

3.2. The Idea of a Partial Valuation

The precise definition of a `partial valuation’ is that it is a local section

of the spectral presheaf S on the category 2d of bounded self-adjoint operators

with discrete spectra. This translates into the following explicit set of
properties:

Definition 3.1. A partial valuation on the set of bounded, self-adjoint
operators with discrete spectra is a map V: dom V ® R defined on a subset

dom V of such operators (called the domain of V ) such that:

1. If AÃP dom V, then V(AÃ) P s (AÃ).
2. If AÃ P dom V and BÃ 5 f (AÃ), then (i) BÃ P dom V; and (ii)

V(BÃ) 5 f (V(AÃ)).

One consequence of this definition is that if AÃbelongs to the domain

of V, then so do all its spectral projectors. This is because any such projector

EÃ[A P D ] can be written as

EÃ[A P D ] 5 x D (AÃ) (3.1)

where x D : s (AÃ) ® R is the characteristic function of D # s (AÃ). It follows that

V(EÃ[A P D ]) 5 x D (V(AÃ)) 5 H 1 if V(AÃ) P D
0 otherwise

(3.2)

Note that, provided dom V Þ 0/ , real multiples of the unit operator 1Ã
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belong to the domain of any partial valuation V. This is because if AÃis any

operator in dom V, then r1Ã5 cr(AÃ), where cr : s (AÃ) ® R is the constant map

cr (a) : 5 r for all a P s (AÃ). This also shows that V(1Ã) 5 1.
The definition of a partial valuation is not empty since there clearly

exists a `trivial’ example V0 whose domain is defined as dom V0 : 5 {r1Ã) r P
R }, and with V0(r1Ã) : 5 r. However, nontrivial partial valuations also exist.

For example, we have the following definition:

Definition 3.2. Let MÃbe any bounded, self-adjoint operator with a purely

discrete spectrum, and let m P s (MÃ) be one its eigenvalues. Then the

associated partial valuation V M ,m is defined as follows:

1. The domain of V M,m is defined as

dom V M ,m : 5 ¯ MÃ: 5 { f2d: AÃ® MÃ} 5 {AÃ) $ f s.t. AÃ5 f (MÃ)} (3.3)

where the last equality holds since there is at most one morphism

between two objects in 2d .

2. If AÃP dom V M,m with AÃ5 f (MÃ), then the value of V M,m(AÃ) is

V M,m(AÃ) : 5 f (m) (3.4)

It is straightforward to check that this satisfies the requirements for a

partial valuation.

Note that, generally speaking, a partial valuation of this type can be

extended `upward’ in the sense that if there is a morphism h2d : MÃ® NÃ, so

that MÃ 5 h(NÃ), then V M,m can be extended to NÃby defining V M ,m(NÃ) to be

any eigenvalue n of N such that h(n) 5 m [there must be at least one such
eigenvalue since s (MÃ) 5 h( s (NÃ))]. Therefore, one might as well suppose in

the first place that MÃis a maximal operator.8

The domain of a valuation V M ,m forms a commutative set of operators.

However, there is no reason in general why the domain of a partial valuation

should be commutative. For example, the use of a non-Abelian domain forms
an integral part of the modal interpretation of Bub and Clifton (1996; Clifton,

1995; Bub, 1997).

We note that a partial valuation V gives a simple `false±true’ assignment

to propositions of the type `A P D ’ provided that A lies in the domain of

V. Specifically,

V(A P D ) : 5 H `true` if V(A) P D
`false’ otherwise

(3.5)

Thus the proposition `A P D ’ is true if A lies in the domain of V and if the

8 In the present context, we could define an operator MÃto be maximal if, for any operator NÃ

and function h: s (NÃ) ® R such that MÃ 5 h(NÃ), there exists g: s (MÃ) ® R such that NÃ5
g(MÃ), i.e., h2: MÃ® NÃimplies that MÃand NÃare isomorphic objects in the category 2.
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value of A lies in the range D ; it is false if A lies in the domain of V and

the value of A does not lie in D . If A is not in the domain of V, no truth-

value at all is assigned to propositions about the value of A. Of course, these
assignments are consistent with the assignment in (3.2) of a 0±1 value to

the projection operator EÃ[A P D ].

3.3. The Construction of a Generalized Valuation from a Partial
Valuation

3.3.1. The Basic Idea

Let V be any partial valuation, and consider a proposition of the form

`A 5 a,’ where a is an eigenvalue of AÃand where AÃdoes not lie in the
domain of V. The implication of the Kochen±Specker theorem is that it may

not be possible to extend the domain of V to include AÃ. If this is indeed the

case, then the proposition `A 5 a’ cannot be given a value of either true or

false in a way that is consistent with the values already given by V to the

operators in its domain.

However, consider a proposition of the form `f (A) 5 f (a).’ As was
emphasized earlier, this will generally be weaker than `A 5 a,’ both in a

conceptual senseÐ knowing that the quantity f (A) has the value f (a) gives

only limited information on the value of A itself [it could be any number b
such that f (b) 5 f (a)]Ð and in the mathematical sense that, in the lattice of

projection operators [c.f. (1.8)],

EÃ[A 5 a] # EÃ[ f (A) 5 f (a)] (3.6)

where EÃ[A 5 a] projects onto the eigenspace of AÃwith eigenvalue a, and

EÃ[ f (A) 5 f (a)] projects onto the eigenspace of f (AÃ) with eigenvalue f (a).

More precisely,

EÃ[ f (A) 5 f (a)] 5 o
b P s (A), f (b) 5 f (a)

EÃ[A 5 b] 5 EÃ[A P f 2 1( f ({a}))] (3.7)

In other words, EÃ[ f (A) 5 f (a)] is the sum of the (orthogonal) set of those

projectors in the spectral decomposition of AÃwhose corresponding eigenval-

ues are mapped into the number f (a) by the function f: s (AÃ) ® R .

The key remark is then the following. It is possible that, for one (or

more) function f, (i) the coarse-grained operator f (AÃ) does lie in the domain

of V (i.e., at least part of the spectral algebra of AÃlies in dom V ) and (ii)
V( f (AÃ)) 5 f (a). Under these circumstances, we can assign a true value to

the weaker proposition `f (A) 5 f a),’ and thereby assign a partial truth-value

to the original proposition `A P D .’ We note that if g: s ( f (AÃ)) ® R , then

V(g( f (AÃ))) 5 g( f (a)), i.e., V(g + f (AÃ)) 5 g + f (a), and hence if the function
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f satisfies the above conditions, so does g + f for any g; in other words, the

set of such functions determines a sieve on AÃin the category 2d .

Motivated by these remarks, we propose the following definition of a
generalized valuation associated with a partial valuation.

Definition 3.3. Given a partial valuation V on the set of bounded self-

adjoint operators with discrete spectra, the associated generalized valuation
is defined on a proposition `A 5 a’ as

n V(A 5 a)

: 5 H { f2d : BÃ® AÃ) BÃP dom V, V(BÃ) 5 f (a)} if a P s (AÃ)

0/ otherwise
(3.8)

A crucial consequence of this definition is that, as indicated above,

n V(A 5 a) is a sieve on AÃin the category 2d . Indeed, suppose f2d : BÃ® AÃ

belongs to n V(A 5 a), and consider any morphism g2d : CÃ® BÃ. Then, since

BÃP dom V and CÃ5 g(BÃ), the definition of a partial valuation shows that

(i) CÃP dom V and (ii) V(CÃ) 5 g(V(BÃ)). However, g(V(BÃ)) 5 g( f (a)) 5 g +
f (a), and hence V(CÃ) 5 g + f (a). Thus f2d + g2d : CÃ® AÃis in the set n V(A 5
a), which is therefore a sieve.

Thus the partial truth-value n V(A 5 a) of the proposition `A 5 a’ is

defined to be the sieve on AÃof coarse-grainings f (AÃ) of AÃ, at which the

proposition `f (A) 5 f (a)’ is `totally’ true according to the partial valuation V.

3.3.2. The Origin of Contextuality

The fact that n V(A 5 a) is a sieve is of considerable importance since

it shows that the target space of the valuation n V(A 5 a) is a genuine

mathematical logic: namely, the Heyting algebra V (AÃ) of sieves on the object

AÃin the category 2d .

In more general terms, the sieve-like nature of the generalized valuation

gives strong support to our claim that topos theory is the appropriate mathe-
matical framework in which to develop these ideas. This is particularly so

in regard to the presheaf idea of `contextual’ logic. From the defining property

of a generalized valuation in (3.8), it is clear that if the propositions `A 5
a’ and `C 5 c’ happen to correspond to the same projection operator PÃ, so

that EÃ[A 5 a] 5 EÃ[C 5 c] 5 PÃ, this does not mean that n V(A 5 a) is equal

to n V(C 5 c); indeed, the former is a sieve on AÃ, while the latter is a sieve
on CÃ. Furthermore, if the projection operator PÃis thought of as representing

some physical quantity P directly, then the proposition `P 5 1’ can also be

assigned a partial truth-value n V(P 5 1), which, as a sieve on PÃ, is different

from both n V(A 5 a) and n V(C 5 c).
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The situation can be summarized by saying that if we were to change

our perspective slightly and assign partial truth-values to projection operators,

rather than to propositions about the values of physical quantities, then the
actual value assigned to any specific projector PÃwill depend on the context
chosen, i.e., we have to choose a particular self-adjoint operator AÃfrom the

set of all operators OÃwhose set WO of spectral projectors includes PÃ; hence

each context corresponds to a `stage of truth’ for the presheaf.

Thus, we see that, in the notation ` n V(A 5 a),’ the argument `A 5 a’

serves two purposes: (i) it specifies the associated projection operator EÃ[A 5
a] and (ii) it indicates the context (i.e., AÃ) in which a partial truth-value is

to be ascribed to this projector. This manifest contextuality is one of the

crucial features that distinguishes our scheme from a naive one in which one

tries simply to assign to each projector the value 1 or 0Ð an attempt that

immediately falls foul of the Kochen±Specker theorem.

If desired, this shift in perspective can be reflected in the notation by
rewriting n V(A 5 a) as n V

A(PÃ) to emphasize that the former can be construed

as the partial truth-value assigned to the projection operator PÃ( 5 EÃ[A 5 a])

in the context/stage of truth of the self-adjoint operator AÃ. Notice that, as is

characteristic of presheaf logic, the Heyting algebra to which n V
A(PÃ) belongs

itself depends on the context AÃ; namely, it is the algebra V (AÃ) of sieves on A.

3.3.3. Extension to Propositions `A P D ’

The construction above of a generalized valuation can be extended in

an obvious way to include more general propositions of the form `A P D ,’
where D is any Borel9 subset of the spectrum s (AÃ). Note that the set of these

propositions is naturally equipped with the logical structure of the Boolean

algebra of all Borel subsets of s (AÃ); in the quantum theory, this algebra is

represented by the spectral algebra WA of projectors onto the eigenspaces

associated with these Borel subsets.
Specifically, we define:

Definition 3.4. Given a partial valuation V, the associated generalized
valuation is defined on a proposition `A P D ’ as

n V(A P D ) : 5 { f2d : BÃ® AÃ) BÃP dom V, V(BÃ) P f ( D )} (3.9)

It is a straightforward exercise to show that the right-hand side is a sieve on
AÃin the category 2d .

9 Note that any subset of the spectrum of an operator in 2d is Borel, and hence the qualification
is unnecessary. However, we shall leave in references to `Borel’ subsets as this is of importance
for operators whose spectrum is not just discrete.
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3.3.4. `Totally True’ and `Totally False’

This is a convenient point at which to give a precise meaning to the

concepts `totally true’ and `totally false’ that have been employed up to now

in a rather heuristic way. These concepts, too, are contextual in nature.
The formal definition is as follows:

Definition 3.5:
1. The proposition `A P D ’ is totally true at the stage of truth AÃif

n V(A P D ) 5 trueA : 5 ¯ AÃ5 { f2d : BÃ® AÃ} (3.10)

2. The proposition `A P D ’ is totally false at the stage of truth AÃif

n V(A P D ) 5 falseA : 5 0/ (3.11)

Thus a proposition is totally true in the context AÃif its partial truth-value is
equal to the principal sieve on AÃ, which is the unit element in the Heyting

algebra V (AÃ); the proposition is totally false if it is equal to the empty sieve,

which is the zero element in V (AÃ).
Note that if n V(A 5 a) 5 ¯ AÃ, then, in particular, the identity morphism

idA: AÃ® AÃbelongs to the sieve n V(A 5 a). According to Definition 3.3, this

means that (i) AÃP dom V and (ii) V(AÃ) 5 a. Conversely, if AÃP dom V and
V(AÃ) 5 a, then n V(A 5 a) 5 ¯ AÃ. Thus the proposition `A 5 a’ is totally

true if and only if n V(A 5 a) 5 trueA . Hence the notion of total truth of the

proposition `A 5 a’ captures precisely the idea that the quantity A does

indeed have a value, and that value is a.

More generally, n V(A P D ) 5 trueA if and only if A lies in the domain

of V and the value of A assigned by V lies in the subset D # s (AÃ).

3.3.5. Modification of 2d to Remove Minimal Truth-Values

As things stand, if D Þ 0/ , the proposition `A P D ’ is never totally false

since, as mentioned in Section 3.2, real multiples of the unit operator 1Ãbelong

to the domain of any partial valuation, and so cr2d: r1Ã® AÃwith V(r1Ã) 5 r
5 cr(a) for all a P s (AÃ) is bound to be in n V(A P D ) if D Þ 0/ . Thus the

morphism cr2d: r1Ã® AÃalways belongs to the sieve n V(A P D ) provided only

that D is not the empty set.

If n (A P D ) 5 {cr2d: r1Ã® A ) r P R }, then we will say that the proposition

`A P D ’ is minimally true; that is, it really provides no interesting information

about the value of A. If desired, the existence of such minimal truth-values
can be removed by the simple expedient of replacing the category 2d with

the category 2d*
, which is defined to be 2d minus (i) the objects r1Ã, r P R ,

and (ii) all morphisms that have these objects as domains. Clearly, there is

a precise analogue of this construction for the category 2 of all bounded
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self-adjoint operators on *. The analogous modification of the category 0
consists in removing the trivial Boolean algebra {0, 1} as a possible context/

stage of truth; we shall denote the resulting category by 0
*
.

Whether or not one wants to make the change from 2d to 2d*
is not

totally clear, and for the moment we prefer to keep the two options open as

two slightly different schemes. Most of the material that follows is valid

irrespective of whether 2d or 2d*
is used; where there is a significant differ-

ence, we shall point it out.

3.3.6. The Analogue of FUNC

Let us turn now to the crucial question of the analogue of the functional

composition condition FUNC; in particular, we must check that if the proposi-

tion `A P D ’ is given the value `totally true,’ then, in an appropriate sense,

this is also the case for the proposition `h(A) P h( D )’ for any h: s (AÃ) ® R .

The following theorem provides the key to seeing that this is so.

Theorem 3.1. If h2d : CÃ® AÃ, so that CÃ5 h(AÃ), then

n V(C P h( D )) 5 h*2d( n
V(A P D )) (3.12)

where the pullback h*2d(S) of S P V (AÃ) by h2d : CÃ® AÃis the sieve on CÃ

defined as [cf. Eq. (A.11)]

h*2d(S) : 5 {k2d: DÃ® CÃ) h2d + k2d P S} (3.13)

Proof. We have

n V(C P h( D )) : 5 {k2d: DÃ® CÃ) DÃP dom V, V(DÃ) P k(h( D ))} (3.14)

and so, since CÃ5 h(AÃ), if k2d P n V(C P h( D )), then h2d + k2d : DÃ® AÃwith

DÃ P dom V and V(DÃ) P k + h( D ); hence h2d + k2d P n V(A P D ), so that
k2d P h*2d( n

V(A P D )). Thus n V(C P h( D )) # h*2d( n
V(A P D )).

Conversely, let k2d : DÃ® CÃbelong to h*2d( n
V(A P D )); thus h2d + k2d P

n V(A P D ). Then DÃP dom V, and V(DÃ) P k(h( D )), and so k2d P n V(C P
h( D )). Hence h*2d( n

V(A P D )) # n V(C P h( D )). QED

In particular, suppose that n V(A P D ) has the value `totally true,’ i.e.,

it is equal to the unit 1A (or `trueA’ ) of the Heyting algebra V (AÃ) of sieves

on AÃ. Then

h*2d( n
V(A P D )) 5 h*2d(1A) 5 1C (3.15)

and so, by equation (3.12), we get n V(C P h( D )) 5 1C; hence the proposition

`C P h( D )’ has the value `totally true’ in the Heyting algebra of sieves on CÃ.
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In summary: if the proposition `A P D ’ is totally true at the stage of

truth AÃ, then the weaker proposition `h(A) P h( D )’ is also totally true at the

stage of truth h(AÃ). This result is precisely the type of thing we wanted, and
justifies our taking (3.12) to be the presheaf analogue of the functional

composition rule.

Furthermore, the pullback of a sieve by a morphism that is itself a

member of the sieve is the principal sieve [see the discussion around (A.12)

in the Appendix]. Thus (3.12) implies that the partial truth-value of a proposi-

tion `A P D ’ is the set of coarse-grainings of AÃwhich are such that the
associated propositions are totally true at their own `stages of truth.’

3.4. Algebraic Properties of the Generalized Valuation n V

Let us consider now the extent to which the generalized valuation (3.9)

satisfies the conditions listed in (1.13)±(1.15) in the Introduction. We shall

also consider explicitly the possibility that the generalized valuation might

satisfy strong disjunctive or conjunctive conditions.

3.4.1. The Null Proposition Condition

The null proposition regarding the value of the physical quantity A is

`A P 0/ ,’ and then n V(A P 0/ ) : 5 { f2d : BÃ® AÃ) BÃP dom V, V(BÃ) P f (0/ )}.

But f (0/ ) 5 0/ , and hence n V(A P 0/ ) 5 0/ , which is the zero element of the
Heyting algebra V (AÃ). Hence, as required, n V(0) 5 0A; or, to indicate the

context in a more precise way,

n V
A(0Ã) 5 0A (3.16)

3.4.2. The Monotonicity Condition

To check monotonicity, we consider propositions `A P D 1’ and `A P
D 2’ with D 1 # D 2, which is equivalent to the propositional relation `A P
D 1 # A P D 2.’

Then if f2d : BÃ® AÃbelongs to n V(A P D 1), we have BÃP dom V and
V(BÃ) P f ( D 1). However, D 1 # D 2 implies f ( D 1) # f ( D 2); and hence V(BÃ) P
f ( D 2). Thus f2d also belongs to n V(A P D 2). This proves the monotonicity

condition

`A P D 1 # A P D 2’ implies n V(A P D 1) # n V(A P D 2) (3.17)

3.4.2.1. A Strong Disjunctive Condition. As noted in Section 1.3, the

monotonicity condition implies the weak disjunctive and conjunctive

conditions
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n V(A P D 1) Ú n V(A P D 2) # n V(A P D 1 Ú A P D 2) (3.18)

and

n V(A P D 1 Ù A P D 2) # n V(A P D 1) Ù n V(A P D 2) (3.19)

respectively.

However, it turns out that n V satisfies a strong disjunctive condition in

which the inequality in (3.18) is replaced by an equality.

To see this, consider propositions `A P D 1’ and `A P D 2,’ so that `A P
D 1 Ú A P D 2’ is the equivalent to the proposition `A P D 1 ø D 2’ [i.e., the

logical ` Ú ’ operation is taken in the Boolean algebra of propositions about
the value of A lying in Borel subsets of s (AÃ)]. Then

n V(A P D 1 Ú A P D 2)

: 5 { f2d : BÃ® AÃ) BÃP dom V, V(BÃ) P f ( D 1 ø D 2)} (3.20)

which, since f ( D 1 ø D 2) 5 f ( D 1) ø f ( D 2), gives

n V(A P D 1 Ú A P D 2)

5 { f2d : BÃ® AÃ) BÃP dom V, V(BÃ) P f ( D 1), or V(BÃ) P f ( D 2)} (3.21)

However, the right-hand side of this expression is just n V(A P D 1) ø n V(A
P D 2). Thus we see that

n V(A P D 1 Ú A P D 2) 5 n V(A P D 1) Ú n V(A P D 2) (3.22)

where the ` Ú ’ operation on the right-hand side is taken in the Heyting algebra

V (AÃ), and where we recall from (A.16) that if S1 and S2 are sieves on the

same object, then S1 Ú S2 : 5 S1 ø S2. Thus, the generalized valuation n V

satisfies a disjunctive condition in the strong sense that the equality holds. As

we shall see later, this is not the case for other types of generalized valuation.

3.4.2.2. No Strong Conjunctive Condition. One might wonder if there

is not a strong version of the conjunctive condition, too, in which the inequality

in (3.19), which comes purely from monotonicity, is replaced by an equality.

To check this, we note that the conjunction `A P D 1 Ù A P D 2’ 5 `A P
D 1 ù D 2’ receives the truth-value

n V(A P D 1 Ù A P D 2)

: 5 { f2d : BÃ® AÃ) BÃP dom V, V(BÃ) P f ( D 1 ù D 2)} (3.23)

whereas

n V(A P D 1) Ù n V(A P D 2) 5 n V(A P D 1) ù n V(A P D 2)

: 5 { f2d : BÃ® AÃ) BÃP dom V, V(BÃ) P f ( D 1) and V(BÃ) P f ( D 2)} (3.24)
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where we have used the definition in (A.15) that if S1 and S2 are sieves on

the same object, then S1 Ù S2 : 5 S1 ù S2.

However, f ( D 1 ù D 2) # f ( D 1) ù f ( D 2), and the equality may not hold
if f is many-to-one. Thus the most that can be deduced from (3.23)±(3.24)

is that n V(A P D 1 ù D 2) # n V(A P D 1) ù n V(A P D 2), which gives only

the inequality

n V(A P D 1 Ù A P D 2) # n V(A P D 1) Ù n V(A P D 2) (3.25)

that could have been derived directly from the monotonicity result in (3.17).

As anticipated in the Introduction (the discussion in Section 1.3), there

are good reasons for expecting the strict equality not to hold. For example,

consider the propositions `A P {a1}’ and `A P {a2}’ with a1 Þ a2. Then

n V(A P {a1} ù {a2}) 5 n V(A P 0/ ) 5 0/ (3.26)

whereas

n V(A P {a1}) Ù n V(A P {a2})

5 { f2d : BÃ® AÃ) BÃP dom V, V(BÃ) 5 f (a1) 5 f (a2)} (3.27)

and there is no reason for this to be the empty set, or even to be just minimally

true: all that is necessary is that there is some nontrivial function f : s (AÃ) ®
R such that f (AÃ) P dom V and f (a1) 5 f (a2). Thus, in this special `topos’
sense, a physical quantity can have more than one partial value at once!

3.4.3.3. The Exclusivity Condition. It is necessary to check the exclusiv-

ity condition since this cannot be derived directly from the monotonicity

result in (3.17).

So, suppose that n V(A P D 1) 5 trueA 5 ¯ AÃ, and that D 2 is such that

D 1 ù D 2 5 0/ . Then, from the definition of n V, it follows that idA belongs to

the sieve n V(A P D 1), and hence AÃP dom V and V(AÃ) P D 1. Therefore,
since D 1 ù D 2 5 0/ , we have V(AÃ) ¸ D 2, and hence idA is not a member of

the sieve n V(A P D 2). This does not mean that n V(A P D 2) is equal to falseA

( 5 0/ ), but it does make it strictly less than trueA. Thus we have shown that

if A P D 1 and A P D 2 are disjoint propositions, and if n V(A P D ) 5 trueA,

then n A(A P D 2) , trueA; hence exclusivity is satisfied.

3.4.3.4. No Unit Proposition Condition. The unit proposition in the

Boolean algebra of propositions about A is simply `A P s (AÃ),’ and a priori
one might expect that this is always given the value `trueA,’ so that there is

a unit analogue of the null condition (3.16). We shall refer to this as the `unit

proposition condition’ and state it formally as follows:

Unit Proposition Condition: For all stages of truth AÃ
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n (A P s (AÃ)) 5 trueA (3.28)

or, in the alternative notation for valuations on projection operators,

n A(1Ã) 5 trueA (3.29)

However, in fact, this is not necessarily satisfied by the generalized

valuation n V. Indeed, from the definition of n V we see at once that

n V(A P s (AÃ)) : 5 { f2d : BÃ® AÃ) B ® P dom V, V(BÃ) P f ( s (AÃ))}

5 { f2d : BÃ® AÃ) BÃP dom V } (3.30)

where the last equality holds since, for these discrete-spectra operators,

f ( s (AÃ)) 5 s (BÃ), which means that V(BÃ) is always an element of the set
f ( s (AÃ)). Thus

n V(A P s (AÃ)) 5 dom V ù ¯ AÃ (3.31)

which could well be a proper subset of the sieve trueA : 5 ¯ AÃ. Thus, in this

situation, even the proposition `A has some value’ is not totally true! Rather,

the partial truth-value of this proposition is a measure of the `proximity’ of

the observable A to the domain of the partial valuation. Borrowing a standard

piece of nomenclature from topos theory, one could say that the physical

quantity A only `partially exists’ in this situation.
As we shall see in Section 4.3, the generalized valuations associated with

quantum states are different, and always satisfy the unit proposition condition.

4. GENERALIZED VALUATIONS AND QUANTUM STATES

Motivated by Definition 3.3 as an example of a sieve-valued generalized

valuation and by the properties of these valuations, we turn now to the formal

definition of a generalized valuation that is not based on the existence of

any partial valuation. We shall then discuss the precise way in which this
fits into a topos framework, and finally in this section we will show how a

quantum state gives rise to a generalized valuation.

4.1. The Definition of a Generalized Valuation

Since we wish to apply these methods to the category 2 of all bounded,
self-adjoint operators, the first step is to give meaning to the projector EÃ[ f (A)

P f ( D )] in those cases in which f ( D ) is a Borel subset of s ( f (AÃ)). The main

ingredient is the following theorem (which is also used in Section 5.3):

Theorem 4.1. If D is a Borel subset of s (AÃ), and if f : s (AÃ) ® R is a

Borel function such that f ( D ) is a Borel subset of s ( f (AÃ)), then if W f (A) is

viewed as a subalgebra of the Boolean algebra WA we have
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EÃ[ f (A) P f ( D )] 5 inf{QÃP W f (A) # WA ) EÃ[A P D ] # QÃ} (4.1)

where the infimum of projectors is taken in the (complete) lattice structure

of 3.

Proof. Let IÃ: 5 inf{QÃP W f (A) # WA ) EÃ[A P D ] # QÃ}; then, since E[A
P D ] # EÃ[ f (A) P f ( D )], we clearly have IÃ# EÃ[ f (A) P f ( D ).

Conversely, suppose QÃP W f (A) # WA is such that EÃ[A P D ] # QÃ. There

is some Borel subset K # s ( f (AÃ)) such that QÃ 5 EÃ[ f (A) P K ], and so

EÃ[A P D ] # EÃ[ f (A) P K ]. However, EÃ[ f (A) P K ] 5 EÃ[A P f 2 1(K )]; and

hence the inequality reads EÃ[A P D ] # EÃ[A P f 2 1(K )], which implies D #
f 2 1(K ) (up to sets of spectral-measure zero), and hence that f ( D ) # f ( f 2 1(K ))

# J. In turn, this implies that QÃ 5 EÃ[ f (A) P K ] $ EÃ[ f (A) P f ( D )]. In
summary: EÃ[A P D ] # QÃimplies that EÃ[ f (A) P f ( D )] # QÃ, and hence

EÃ[ f (A) P f ( D )] # IÃ. Thus EÃ[ f (A) P f ( D )] 5 IÃ. Q.E.D.

The key idea now is to use the right hand side of Eq. (4.1) as the

definition of the symbol EÃ[ f (A) P f ( D )] in those cases in which f ( D ) is not

a Borel subset of s ( f (AÃ)). In this context, we note that since W f (A) is a

complete sublattice of 3, the right hand side of Eq. (4.1) is always of the
form E[ f (A) P J ] for some Borel subset J of s ( f (AÃ)). Note also that,

considered as a definition of EÃ[ f (A) P f ( D )], the expression Eq. (4.1) can

be usefully rewritten as

EÃ[ f (A) P f ( D )] : 5 inf
K # s ( f (AÃ))

{EÃ[ f (A) P K ] ) EÃ[A P D ] # EÃ[ f (A) P K ]} (4.2)

5 inf
K # s ( f (AÃ))

{EÃ[ f (A) P K ] ) EÃ[A P D ] # EÃ[A P f 2 1(K )]} (4.3)

5 inf
K # s ( f (AÃ))

{EÃ[ f (A) P K ] ) D # f 2 1(J )} (4.4)

where the infinum is taken over all Borel subsets J of s ( f (AÃ)). From now

on we shall use Eq. (4.2) as the definition of EÃ[ f (A) P f ( D )] for the category

of operators 2.

Equipped with this idea, we can give the definition of a generalized
valuation on propositions about the values of any physical quantity repre-

sented by a bounded self-adjoint operator AÃin 2:

Definition 4.1. A generalized valuation on the propositions in a quantum

theory is a map n that associates to each proposition of the form `A P D ’

[where D is a Borel subset of s (AÃ)] a sieve n (A P D ) on AÃin 2. These sieves

must satisfy the following properties:
(i) Functional composition. For any Borel function h: s (AÃ) ® R we have

n (h(A) P h( D )) 5 h*2 ( n (A P D )) (4.5)

(ii) Null proposition condition:
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n (A P 0/ ) 5 0A (4.6)

(iii) Monotonicity:

If D 1 # D 2, then n (A P D 1) # n (A P D 2) (4.7)

(iv) Exclusivity:

If D 1 ù D 2 5 0/ and n (A P D 1) 5 trueA, then n (A P D 2) , trueA (4.8)

We may also wish to add the `unit proposition condition’ :
(v) Unit proposition condition:

n (A P s (AÃ)) 5 trueA (4.9)

It should be noted that this definition of a generalized valuation makes

sense for operators whose spectra contains continuous parts, as well as for

those spectra is purely discrete. However, in order to give meaning to the
proposition `h(A) P h( D )’ in (4.5) if h( D ) is not a Borel subset of s (h(AÃ)),
it is more appropriate to think of a generalized valuation as being defined

on the projectors EÃ[A P D ], rather than on the more abstract propositions

`A P D ’ themselves; for this enables the definition in (4.2) to be used.

The physical interpretation of a generalized valuation is motivated by

the special case of the valuations n V discussed in the last section. Namely,
the partial truth-value n (A P D ) of the proposition `A P D ’ is a sieve of

coarse-grainings f (AÃ) of AÃat which each associated proposition `f (A) P
f ( D )’ is totally true, reflecting the fact that if f2: BÃ® AÃbelongs to the sieve

n (A P D ) on AÃ, then, by the definition of a sieve, the pullback f *2 n (A P D )

to f (AÃ) of this sieve is necessarily the principal sieve on f (AÃ) [see (A.12)].

In general terms, we can say that the `size’ of the sieve n (A P D ) determines
the degree of the partial truth of the proposition `A P D .’

We note that, as in the earlier discussion of the generalized valuation

n V, the phrase `A P D ’ in n (A P D ) performs the dual function of specifying

(i) the projection operator whose partial truth-value is to be given and (ii)

the contextÐ the operator AÃÐ in which this valuation takes place.
As in the previous section, this contextuality can be made more explicit

by shifting the emphasis to think of valuations as being defined on projection

operators in the explicit context of a specific physical quantity. Then the

truth-value associated with a specific PÃP 3 depends on the context of a

particular self-adjoint operator AÃwhose set of spectral projectors WA includes

PÃ. In this manifestly contextual form, the definition of a generalized valuation
would read as follows:

Definition 4.2. A generalized valuation on the lattice of projection opera-

tors 3 in a quantum theory is a collection of maps n A: WA ® V (AÃ), one for

each `stage of truth’ AÃin the category 2, with the following properties:
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(i) Functional composition: For any Borel function h: s (AÃ) ® R ,

n h(A)(EÃ[h(A) P h( D )]) 5 h*2 ( n A(EÃ[A P D ]) (4.10)

(ii) Null proposition condition:

n A(0Ã) 5 0A (4.11)

(iii) Monotonicity:

If a Ã, b ÃP WA with a Ã# b Ã, then n A( a Ã) # n A( b Ã) (4.12)

(iv) Exclusivity:

If a Ã, b ÃP WA with a Ãb Ã5 0Ãand n A( a Ã) 5 trueA, then n A( b Ã) , trueA

(4.13)

We may wish to supplement this list with:
(v) Unit proposition condition:

n A(1Ã) 5 trueA (4.14)

Note that in writing equation (4.10) we have employed the specific
`coarse-graining’ function from the Boolean algebra WA to the Boolean algebra

Wh(A) defined by the map

EÃ[A P D ] j EÃ[h(A) P h( D )] (4.15)

where, if necessary, the right-hand side is to be understood in the sense of

(4.2). In Section 5.3 we shall consider a more general way of understanding

this operation.

4.2. The Topos Interpretation of Generalized Valuations

4.2.1. The Coarse-Graining Presheaf

From what has been said so far it should be clear that ideas of topos

theory lie at the heart of our constructions. However, the only explicit feature

that has appeared so far is our use of sieves as truth-values, and we wish

now to explain more fully how our ideas fit in with the theory of presheaves.

A key ingredient in exhibiting the underlying topos framework of gener-
alized valuations is a certain presheaf on 2 that incorporates our central idea

of operator coarse-graining. This is contained in the following definition.

Definition 4.3. The coarse-graining presheaf over 2 is the covariant

functor G: 2op ® Set defined as follows.

1. On objects in 2: G(AÃ) : 5 WA, where WA is the spectral algebra of AÃ.
2. On morphisms in 2: If f2: BÃ® AÃ[i.e., BÃ5 f (AÃ)], then G( f2):
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WA ® WB is defined as

G( f2)(EÃ[A P D ]) : 5 EÃ[ f (A) P f ( D )] (4.16)

where, if necessary, the right-hand side is to be understood in the sense of (4.2).

Note that G( f2): WA ® W f (A) is just the coarse-graining operation consid-

ered above in (4.15).

The main step in proving that G is a contravariant functor from 2 to

Set is to show that if f2: BÃ® AÃand g2: CÃ® BÃ, then G( f2 + g2) 5 G(g2) +
G( f2), as in (A.6). However, G( f2)(EÃ[A P D ]) : 5 EÃ[ f (A) P f ( D )], and
therefore, if f ( D ) and gf ( D ) are Borel subsets of the appropriate spectra, then

G(g2)(EÃ[ f (A) P f ( D )]) : 5 EÃ[g( f (A)) P g( f ( D ))] (4.17)

while

G( f2 + g2)(EÃ[A P D ]) : 5 EÃ[g( f (A)) P g( f ( D ))] (4.18)

Hence G( f2 + g2) 5 G(g2) + G( f2), as desired. If f ( D ) or g( f ( D )) are not
Borel subsets, then the result follows (using the definition in (4.2)) as a

special case of the result stated after Definition 5.4.

4.2.2. The Natural Transformation between G and V

A key technical result in revealing the topos content of our constructions

is the following.

Theorem 4.2. To each generalized valuation n on 3 there corresponds

a natural transformation N n between the contravariant functors G and V in

which, at each stage of truth AÃ, the component N n
A: G(AÃ) ® V (AÃ) is defined by

N n
A(PÃ) : 5 n A(PÃ) (4.19)

for all PÃP WA 5 G(AÃ).

Proof. We recall that the subobject classifier V in the topos Set2op
is

defined (i) on objects by V (AÃ) : 5 {S ) S is a sieve on AÃin 2} and (ii) on

morphisms f2: BÃ® AÃby V ( f2): V (AÃ) ® V (BÃ), where V ( f2)(S) : 5 f *2 (S)
for all sieves S P V (AÃ).

As discussed in Section A.2, a natural transformation N between the

contravariant functors G and V is defined to be a family of functions NA:

G(AÃ) ® V (AÃ)Ð one for each stage of truth AÃÐ such that, if f2: BÃ® AÃ, the

composite map G(AÃ) ®
NA

V (AÃ) Ð ®
V ( f2)

V (BÃ) is equal to G(AÃ) Ð ®
G( f2)

G(BÃ) ®
NB

V (BÃ) [cf. the commutative diagram in (A.9)].

In our case, if n is a generalized valuation, the associated natural transfor-

mation N n is defined at stage AÃon G(AÃ) : 5 WA by N n
A(EÃ[A P D ]) : 5 n A(EÃ[A P

D ]) [ n (A P D ). Then
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V ( f2) + N n
A(EÃ[A P D ]) 5 V ( f2)(N n

A(EÃ[A P D ])) 5 f *2 ( n A(EÃ[A P D ]))

(4.20)

while

N n
B + G( f2)(EÃ[A P D ]) 5 N n

B(G( f2)(EÃ[A P D ]))

5 N n
B(EÃ[ f (A) P f ( D )])

5 n f (A)(EÃ[ f (A) P f ( D )]) (4.21)

However, the functional composition principle (4.10) says that the right-hand

sides of (4.20) and (4.21) are identical, which shows that V ( f2) +
N n

A(EÃ[A P D ]) 5 N n
B + G( f2)(EÃ[A P D ]). Hence N n is a natural transformation

between the contravariant functors G and V . QED

Note that, in the language of Definition 4.1, the components of the

natural transformation are N n
A(EÃ[A P D ]) : 5 n (A P D ).

The next three subsections bring out some of the implicit `topos content’

of Theorem 4.1.

4.2.3. Another Perspective on the Coarse-Graining Presheaf

There is another way of looking at the coarse-graining presheaf which

may help to clarify its place in the theory; at least in the case of operators

with purely discrete spectra. Associated with the spectral presheaf S : 2d ®
Set of Definition 2.2 there is another covariant functor B S : 2op

d ® Set, defined
as follows:

1. On objects: B S (AÃ) : 5 B( s (AÃ)), the Boolean algebra of Borel subsets
of the spectrum of AÃ.

2. On morphisms: If f2d : BÃ® AÃ, so that BÃ5 f (AÃ), then B S ( f2d ):

B( s (AÃ)) ® B( s (BÃ)) is defined by

B S ( f2d )( D ) : 5 f ( D ) (4.22)

for all Borel subsets D # s (AÃ).

Note that the spectral Boolean algebra WA is isomorphic to the Boolean

algebra B( s (AÃ)) by the map that associates the projector EÃ[A P D ] P WA

with the Borel subset D P B( s (AÃ)). From equations (4.16) and (4.22), it is
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clear therefore that the coarse-graining presheaf G is essentially the same

thing as the `power object’ B S .10

4.2.4. Generalized Valuations as Subobjects of G

We recall that, in a topos of presheaves such as Set2
op

, a morphism

between a pair of functors (i.e., a pair of objects in the topos) is defined to

be a natural transformation between them. Therefore, Theorem 4.2 implies

that to each generalized valuation n there corresponds a morphism N n : G ®
V between the coarse-graining object G and the subobject classifier V in

the topos Set2
op

. However, precisely because V is the subobject classifier in
this topos, morphisms G ® V are in one-to-one correspondence with subob-

jects of G [see the end of Section A.2; especially equations (A.20) and (A.21)].

Thus, we conclude that to every generalized valuation there corresponds a

subobject of the coarse-graining object G; or, equivalently, of the power

object B S .
Conversely, of course, we could turn this around and define a generalized

valuation to be any subobject of G, or B S , that is subject to the conditions

(4.11)±(4.13), or to the equivalent set (4.6)±(4.8).

One important consequence of looking at a generalized valuation as a

certain type of morphisms from G to V comes from the fact that in any

topos the collection of all subobjects of a given object has the structure of
a Heyting algebra. This is of considerable interest to us since it raises the

possibility that the subset of subobjects that satisfy our extra conditions

(4.11)±(4.13), i.e., the set of generalized valuations, may inherit some or all

of this logical structure. This could be expected to play an important role in

exploring the physical implications of these valuations. We shall return in a

later paper to discussing the structure of the space of all generalized valuations.

4.2.5. Generalized Valuations as Global Sections of a Presheaf

We note in passing that there is a bijection between morphisms from

G to V and global elements of the `exponential’ object V G which, roughly

speaking, is the topos analogue of the set Y X of all maps from X to Y in

normal set theory. Thus a generalized valuation does turn out to be a global
section of a certain presheaf on 2, but it is the presheaf V G, not the simple

dual presheaf D C W to which the Kochen±Specker `no-go’ theorem applies.

10 With any object X in a topos, there is associated another object PX : 5 V X, known as the
`power object,’ which is the topos analogue of the power set of a set (the set of all subsets
of the set). In our case, B S is the subobject of the power object P S obtained by requiring
the elements of B S (AÃ) to be Borel subsets of S (AÃ) : 5 s (AÃ) onlyÐ rather than arbitrary
subsets Ð at each stage AÃ. Thus the `coarse-graining’ presheaf is closely related to the power
object P S .
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4.2.6. The Generalized Valuation of a Physical Quantity

Definition 4.1 gives generalized truth-values to propositions of the form

`A P D ,’ but this leaves open the question of whether there is some correspond-

ing concept of a `generalized value’ for the physical quantity A itself.
Clearly this cannot generally be a single real number, unless all the

propositions `A 5 a,’ a P s (AÃ), are evaluated as falseA except for one, `A
5 a0,’ say, which is evaluated as trueA; in this case one can say that the

value of A is a0. More generally, however, the quantity A has to be given

some sort of `smeared’ value, corresponding to the collection of propositions

`A 5 a’ that are not evaluated as totally false. In fact, this suggests that,
given a generalized valuation n , we might try defining the `value’ of the

physical quantity A as V n (A) : 5 { ^ a, n (A 5 a) & ) a P s (AÃ)}, so that we assign

to A the collection of the eigenvalues of AÃ̀ weighted’ with the generalized

valuations of the associated propositions.

With this preliminary definition, V n (AÃ) is a subset of s (AÃ) 3 V (AÃ), and

is hence a relation between s (AÃ) and V (AÃ). However, since each a P s (AÃ)
is associated with a unique element n (A 5 a) P V (AÃ), this relation defines

a function from s (AÃ) to V (AÃ), and thus we arrive at the idea that V n (A)

should be such a function. However, this holds at each stage of truth AÃ

and, it transpires, these fit together nicely to give a morphism between the

presheaves S and V in the category Set2
op

. More precisely, we have the
following theorem:

Theorem 4.3. To each generalized valuation n in the sense of Definition

4.1 applied to the category 2d , there is associated a natural transformation

V n : S ® V for which, at each stage of truth AÃ, the component V n
A: S (AÃ) ®

V (AÃ) is defined by

V n
A(a) : 5 n (A 5 a) (4.23)

Proof. To see that this is a natural transformation, we have to show that,

if f2d : BÃ® AÃ, the composite map

S (AÃ) ®
V

n
A

V (AÃ) Ð ®
V ( f2d )

V (BÃ)

is equal to

S (AÃ) Ð ®
S ( f2d )

S (BÃ) ®
V

n
B

V (AÃ)

[cf. the commutative diagram in (A.9)].

It is a straightforward task to prove this directly, but in fact this is not

necessary since the theorem can be derived at once from the earlier result

in Theorem 4.2 that N n is a natural transformation from G (or B S ) to V .
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The main step is to note the existence of a natural transformation11 { } S :

S ® B S whose components { } S A that map S (AÃ) 5 s (AÃ) to B S (AÃ) 5
B( s (AÃ)) are

{ } S A(a) : 5 {a} (4.24)

This is well defined since {a} is a Borel subset of the (discrete) spectrum

s (AÃ) of AÃ; that it satisfies the requirements for a natural transformation is

obvious. Then, identifying the coarse-graining presheaf G with B S , we see
that V n

A: S (AÃ) ® V (AÃ) can be written as V n
A 5 (N n + { } S )A for all stages AÃ. Thus

V n 5 N n + { } S (4.25)

which, as a composition of natural transformations, is itself a natural

transformation. QED

In particular, it follows that each generalized valuation defines a subob-

ject of the spectral presheaf S [see the remarks in Section 4.2.4 above, or

(A.21) for the general definition of the subobject associated with a morphism

into V ]. Note that the exclusivity condition means that, in the map V n
A:

S (AÃ) ® V (AÃ), at most one element in S (AÃ) 5 s (AÃ) is assigned the value

`totally true’ (trueA). Thus, the subobject of S defined by V n has the property

that the associated subset of each S (AÃ) is either a singleton or it is empty.

In fact, it defines a partial section of the presheaf S , and hence a partial

valuation in the sense of Section 3 (i.e., a number-valued valuation with a

limited domain)Ð which we will also denote V n Ð with

dom V n : 5 {AÃ) $ a P s (AÃ), s.t. V n
A(a) 5 trueA} (4.26)

and with the value of any operator AÃin this domain being defined as the

associated real number a P s (AÃ).
In Definition 3.3 we showed how to go from a partial valuation/section

to a generalized valuation; here we have shown how each generalized valua-

tion leads back to a partial valuation. We note in passing that the chain

partial valuation ® generalized valuation ® partial valuation (4.27)

takes any given partial valuation back to itself. However, we do not necessarily

return to the starting point if we begin the `chain’ with a generalized valua-

tion, i.e.,

generalized valuation ® partial valuation ® generalized valuation (4.28)

We shall see an explicit example of this in Section 4.5.

11 The notation reflects that fact that { } S : S ® B S is a topos analogue of the map X ® PX,
x j {x}, in standard set theory.
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4.3. The Generalized Valuation Associated with a Quantum State
Vector

We shall now show that any quantum state gives rise to an associated

generalized valuation.

Let us start by considering the extent to which a vector c P * can be

regarded as assigning a value to a physical quantity A represented by a self-
adjoint operator AÃ(whose spectrum need not be purely discrete). In the

standard interpretation of quantum theory, one makes only the minimal claim

that a physical quantity A possesses a value a when the state c is an eigenstate

of AÃwith eigenvalue a, i.e., AÃc 5 a c .

However, the ideas we have been developing in this paper suggest that

even when c is not an eigenvector of AÃ, it may still be possible to give a
partial truth-value to the proposition `A 5 a.’ Indeed, in the light of our

earlier discussion, it is natural to reflect on the possibility that some function

f (AÃ) of AÃmay have c as an eigenvector, even though AÃitself does not. Thus

we are led to define, for each state c P *, an associated generalized valuation

n c on propositions `A 5 a’ as

n c (A 5 a) : 5 { f2: BÃ® AÃ) BÃc 5 f (a) c } (4.29)

The condition BÃc 5 f (a) c is equivalent to EÃ[B 5 f (a)] c 5 c , and this
suggests an obvious extension to include propositions of the form `A P D ’ :

Definition 4.4. The generalized valuation n c associated with a vector

c P * is

n c (A P D ) : 5 { f2: BÃ® AÃ) EÃ[B P f ( D )] c 5 c } (4.30)

where D is a Borel subset of the spectrum s (AÃ) of AÃ. If necessary, the right-

hand side of (4.30) is to be understood in the sense of (4.2).

Note that if c is actually an eigenstate of AÃwith eigenvalue a, then
n c (A P D ) 5 trueA if a P D . This is a good illustration of the general rule

of thumb that if a proposition is evaluated as `totally true,’ this is equivalent

to saying that it is true in the normal sense, i.e., in the sense of simple two-

valued logic.

At this point we could check explicitly that the right hand side of (4.29)

is a sieve and that n c possesses the extra properties (4.5)±(4.8) required for
a generalized valuation. However, we shall first give a few simple examples,

then press on to give a substantial extension of the definition to include

generalized valuations associated with density matrices, and then prove all

the needed results for that.
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4.3.1. An Example with Spin 1/2

We take a two-dimensional spin system with c : 5 (1/ ! 2)(1
1)Ð which

is an eigenstate of SÃxÐ and consider the generalized evaluation of the proposi-

tions `Sz 5 1±2 ’ and `Sz 5 2 1±2 ’ (we choose units in which " 5 1).

The physical quantity Sz is represented by the matrix 1±2 (1
0

0
2 1), and the

only functions of this for which c is an eigenvector are r(SÃz)
2, r P R . Thus,

if we use the category 2, the definition (4.29) of the generalized valuation
n c says that both the propositions `Sz 5 1±2 ’ and `Sz 5 2 1±2 ’ are only minimally

true. If we use the category 2
*

(so that multiples of the unit operator are

excluded as stages of truth), then

n c (Sz 5 1±2 ) 5 0/ ; n c (Sz 5 2 1±2 ) 5 0/ (4.31)

Hence we see that in this particular example the physical quantity Sx, which,

unequivocally, has the value 1/2 in the state c , is sufficiently `far’ from Sz

that propositions assigning a definite value to the latter cannot be evaluated

as anything other than (i) totally false if 2
*

is used as the category of contexts,
or (ii) minimally true if 2 is used.

On the other hand, the spectral projector corresponding to the proposition

Sz P { 2 1/2, 1/2} 5 s (SÃz) is the unit operator 1Ã, and hence

n c (Sz P { 2 1/2, 1/2}) 5 trueSz (4.32)

This result might be construed as asserting that the quantity Sz `exists’ even

if it is not possible to assign a nontrivial truth-value to a proposition that

asserts it has any specific value. As we shall see shortly, this unit proposition

condition [defined earlier in (3.28)] is always satisfied by a generalized

valuation produced by a quantum state.
We note in passing that the result in (4.31) means that this particular

type of generalized valuation cannot be used by itself to construct a stochastic

hidden variable theory. More precisely, the example shows that, given a

valuation n c generated by a normalized state c P *, one cannot expect to

find a measure m A on the space of sieves on AÃsuch that m A[ n c (A P D )] is

equal to the quantum mechanical value ^ c , EÃ[A P D ] c & for the probability
that a measurement of A will yield a result lying in D . Thus, in the example,

we have Prob(Sz 5 1/2; c ) 5 1/2 and Prob(Sz 5 2 1/2; c ) 5 1/2, whereas

the generalized truth values of the propositions `Sz 5 1±2 ’ and `Sz 5 2 1±2 ’ are

both null (or minimal).

4.3.2. An Example with Spin 1

We shall now consider an example where a nontrivial generalized valua-

tion is obtained. This involves a spin-1 system where the physical quantities

Sx and Sz are represented by the matrices
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SÃx 5
1

! 2 1 0 1 0

1 0 1

0 1 0 2 ; SÃz 5
1

! 2 1 1 0 0

0 0 0

0 0 2 1 2 (4.33)

respectively.

Let the quantum state c be (0, 1, 0)Ð which is an eigenstate of SÃz with

eigenvalue 0Ð and consider the propositions `Sx 5 1’ and `Sx 5 2 1.’ Since

c is not an eigenstate of SÃx, neither of these propositions is totally true at

stage SÃx. On the other hand,

SÃ2x 5
1

2 1 1 0 1

0 2 0

1 0 1 2 (4.34)

and we see that SÃ2x c 5 c . Furthermore, taking the square of SÃ2x gives just a

multiple of itself, and taking the cube of SÃx gives just a multiple of SÃx; hence

all functions of SÃx are of the form t1Ã1 kSÃx 1 rSÃ2x. Note that the real numbers

t, k, r have to be such that k and r are not both zero if we use the category

2
*
, since that excludes multiples of 1Ãas possible contexts/stages of truth.

It is easy to check that c is an eigenstate of t1Ã1 kSÃx 1 rSÃ2x if and only

if k 5 0; hence, if st,r2: t1Ã1 rSÃ2x ® SÃx denotes the morphism in 2 that

corresponds to the function st,r: s (SÃx) ® R defined by st,r( l ) : 5 t 1 r l 2, we

see that

n c (Sx 5 1) 5 {st,r2: t1Ã1 rSÃ2x ® SÃx ) t, r P R } (4.35)

and

n c (Sx 5 2 1) 5 {st,r2: t1Ã1 rSÃ2x ® SÃx ) t, r P R } (4.36)

The conclusion is that the propositions `Sx 5 1’ and `Sx 5 2 1’ are both

assigned a nontrivial partial truth-value: namely the sieve {st,r2: t1Ã1 rSÃ2x ®
SÃx ) t, r P R }; if 2

*
is used, then the value r 5 0 is excluded.

On the other hand, we note that the proposition `Sx P { 2 1, 1}’ is

represented by the projector EÃ[Sx 5 2 1] 1 EÃ[Sx 5 1 1], and also

c : 5 1 0

1

0 2 5
1

2 ! 2 1 1

! 2

1 2 2
1

2 ! 2 1 1

2 ! 2

1 2 (4.37)

where the column vectors on the right-hand side are eigenvectors of SÃx with

eigenvalues 1 1 and 2 1, respectively. It follows that EÃ[Sx P { 2 1, 1}] c 5
c , and hence
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n c (Sx P { 2 1, 1}]) 5 trueSx (4.38)

whereas, as shown by (4.35)±(4.36),

n c (Sx 5 1) Ú n c (Sx 5 2 1) 5 {st,r2: t1Ã1 rSÃ2x ® SÃx ) t, r P R } , trueSx

(4.39)

This failure of a strong disjunctive condition is typical of the generalized

valuations produced by quantum states, and we shall return to this feature

shortly. As emphasized in the Introduction, it can be regarded as a fundamental

consequence of the superposition principle of quantum theory.

4.4. The Generalized Valuation Associated with a Density Matrix

We shall now show that it is possible to associate a generalized valuation
to each density matrix state r in the quantum theory. To this end, we note

that the previous definition (4.30) for n c can be reexpressed as

n c (A P D ) 5 { f2: BÃ® AÃ) ^ c , EÃ[B P f ( D )] c & 5 ^ c , c & } (4.40)

or, in more physical terms,

n c (A P D ) 5 { f2: BÃ® AÃ) Prob(B P f ( D ); c ) 5 1} (4.41)

where Prob(B P f ( D ); c ) denotes the usual quantum mechanical probability

that the result of a measurement of B will lie in f ( D ) # s (BÃ) , R , given
that the quantum state is c .

This way of expressing n c clarifies a little the physical meaning of the

generalized valuationÐ it is the set of coarse-grainings f (AÃ) of AÃsuch that

the probability that f (A) lies in f ( D ) is 1, something that is construed in the

standard interpretation as equivalent to saying that f (A) actually has a value

in f ( D ). It also suggests the following definition for a generalized valuation
associated with any density matrix:

Definition 4.5. The generalized valuation n r associated with a density

matrix r is

n r (A P D ) : 5 { f2: BÃ® AÃ) Prob(B P f ( D ); r ) 5 1}

5 { f2: BÃ® AÃ) tr( r EÃ[B P f ( D )]) 5 1} (4.42)

If necessary, the right-hand side of (4.42) is to be understood in the sense
of (4.2).

This class of generalized valuation is clearly of considerable physical

interest, and therefore it is important to check that the necessary conditions

are satisfied (of course, this will include as a special case the generalized

valuations n c , c P *).
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First we show that n r (A P D ) is a sieve on AÃin 2. Thus, suppose f2 P
n r (A P D ), and let h2: CÃ® BÃ. Then, in the lattice 3 of projection operators,

EÃ[B P f ( D )] # EÃ[C P h( f ( D ))]; and hence tr( r EÃ[B P f ( D )]) # tr( r EÃ[C P
h( f ( D ))]. In particular, since f2 P n r (A P D ), we have tr( r EÃ[B P f ( D )]) 5
1, and hence tr( r EÃ[C P h( f ( D ))]) 5 1 [since tr( r PÃ) # 1 for all projection

operators PÃ]. Thus h2 P n r (A P D ), which proves that n r (A P D ) is a sieve

on AÃ.

4.4.1. The Functional Composition Rule

Next we must show that the functional composition rule is satisfied. If

k2: CÃ® AÃ, then

k*2 ( n r (A P D )) : 5 { j2: DÃ® CÃ) k2 + j2 P n r (A P D )}

5 { j2: DÃ® CÃ) tr( r EÃ[D P j (k( D ))]) 5 1} (4.43)

whereas

n r (k(A) P k( D )) : 5 {h2: DÃ® k(AÃ) ) tr( r EÃ[D P h(k( D ))]) 5 1} (4.44)

Thus k*2 ( n r (A P D )) 5 n r (k(A) P k( D )), as required.
We shall now consider the extent to which the object n r defined in (4.42)

satisfies the remaining conditions (4.6)±(4.8) in the formal definition of a

generalized valuation.

4.4.2. The Null Proposition Condition

To check this, we note that n r (A P 0/ ) : 5 { f2: BÃ® AÃ) tr( r EÃ[B P f (0/ )])

5 1}. But this is the empty set since EÃ[B P f (0/ )] 5 0Ã. Hence the null

proposition condition is satisfied.

4.4.3. The Monotonicity Condition

Suppose f2 P n r (A P D 1), where

n r (A P D 1) : 5 { f2: BÃ® AÃ) tr( r EÃ[B P f ( D 1)]) 5 1} (4.45)

If D 1 # D 2, then f ( D 1) # f ( D 2); and in the lattice of projection operators we

then have

EÃ[B P f ( D 1)]) # EÃ[B P f ( D 2)]) (4.46)

But then tr( r EÃ[B P f ( D 1)]) 5 1 implies that tr( r EÃ[B P f ( D 2)]) 5 1 [since

tr( r PÃ) # 1 for all projection operators PÃ]. Thus f2 also belongs to n (A P
D 2), which means that n r (A P D 1) # n r (A P D 2). However, in the Heyting
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algebra of sieves on AÃ, the partial ordering operation is just subset inclusion;

hence we have shown that

D 1 # D 2 implies n r (A P D 1) # n r (A P D 2) (4.47)

as required.

4.4.3.1. No Strong Disjunctive Condition. From the monotonicity result

in (4.47) one can immediately derive the weak disjunctive condition

n r (A P D 1) ø n r (A P D 2) # n r (A P D 1 ø D 2) (4.48)

However, in Section 1.3 we remarked, in rather general terms, that the

existence of the quantum superposition principle suggests that the reverse

inequality may not hold in (4.48). To see this explicitly, consider the special
case when r comes from a state vector c , and let D 1 : 5 {a1}, D 2 : 5 {a2}

with a1 Þ a2, i.e., we are considering the propositions `A 5 a1’ and `A 5
a2.’ Then

n c (A P {a1}) ø n c (A P {a2})

5 { f2: BÃ® AÃ) BÃc 5 f (a1) c or BÃc 5 f (a2) c } (4.49)

whereas

n c (A P {a1, a2}) : 5 { f2: BÃ® AÃ) EÃ[B P f ({a1, a2})] c 5 c } (4.50)

Now suppose f : s (AÃ) ® R is such that f (a1) Þ f (a2). Then satisfaction of

the condition in (4.50) requires only that c lies in the direct sum of the

eigenspaces of the operator BÃ: 5 f (AÃ) that are associated with the eigenvalues

f (a1) and f (a2); in particular, if c is a nontrivial linear superposition of these
eigenstates of BÃ, then f2: BÃ® AÃwill belong to the sieve n c (A P {a1, a2}),

but it will not belong to n c (A P {a1}) ø n c (A P {a2}). Thus, there is a strict

inequality in (4.48); an explicit example is (4.38)±(4.39) in the spin-1 model

discussed above, with f chosen to be the identity map on SÃx . This should be

contrasted with the generalized valuation n V that satisfies the strong disjunc-
tive condition (3.22).

4.4.3.2. No Strong Conjunctive Condition We can also confirm the

absence of any strong conjunctive condition. Indeed, using the same pair of
propositions as above, we have `A P {a1} Ù A P {a2}’ 5 `A P {a1} ù
{a2}’ 5 `A P 0/ ’ ; hence

n r (A P {a1} Ù A P {a2}) 5 0/ 5 0A (4.51)

On the other hand,

n r (A P {a1}) ù n r (A P {a2})

5 { f2: BÃ® AÃ) tr( r EÃ[B P f ({a1})]) 5 1 and tr( r EÃ[B P f ({a2})]) 5 1} (4.52)
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Then, if we chose f such that f (a1) 5 f (a2), it is perfectly possible for the

right-hand side of (4.52) to be nontrivial. Thus, in general, there is no strong

conjunctive condition.

4.4.4. The Exclusivity Condition

Finally, we must check the exclusivity condition. Thus suppose D 1 ù
D 2 5 0/ and n r (A P D 1) 5 trueA; then, in particular, tr( r EÃ[A P D 1]) 5 1.

Now define the real number k : 5 tr( r EÃ[A P D 2]); this satisfies 0 # k # 1.

Then, since D 1 ù D 2 5 0/ , the projectors EÃ[A P D 1] and EÃ[A P D 2] are

orthogonal, and therefore EÃ[A P D 1 ø D 2] 5 EÃ[A P D 1] 1 EÃ[A P D 2]. Thus

tr( r EÃ[A P D 1 ø D 2]) 5 1 1 k. However, since tr( r PÃ) # 1 for all projection
operators PÃ, and k $ 0, we deduce that k 5 0, i.e., tr( r EÃ[A P D 2]) 5 0. This

means that n r (A P D 2) , trueA; which proves exclusivity.

4.4.5. The Unit Proposition Condition

We recall that, in the case of the generalized valuation n V, the unit

proposition A P s (AÃ) is not necessarily given the truth-value trueA but instead

satisfies equation (3.31).

However, the situation for n r is different. Indeed, we have

n r (A P s (AÃ)) : 5 { f2: BÃ® AÃ) tr( r EÃ[B P f ( s (AÃ))]) 5 1} (4.53)

But, according to the definition in (4.2), EÃ[B P f ( s (AÃ))] 5 1Ã. Thus, for these
types of generalized valuation, we do have

n r (A P s (AÃ)) 5 trueA (4.54)

or equivalently,

n r
A(1Ã) 5 trueA (4.55)

for all contexts AÃ.

The Negation Operation

We have not made any use so far of the negation operation in the Heyting

algebra of sieves which was defined in general in (A.18). In the case of the

sieve n r (A P D ), this gives

Ø n r (A P D ) : 5 { f2: BÃ® AÃ) " g2: CÃ® BÃ, f2 + g2 ¸ n r (A P D )}

5 { f2: BÃ® AÃ) " g2: CÃ® BÃ, tr( r EÃ[g( f (A)) P g( f ( D ))]) , 1}

(4.56)

This is one point at which there is a real difference between using 2 and 2
*

as the category of contexts. In the former case, we are allowed the unit
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operator 1Ãas an allowed stage of truth, and then the choice of g as the

constant map c1,2: 1Ã® BÃgives the spectral projector EÃ[g( f (A) P g( f ( D ))

5 EÃ[1 P {1}] 5 1Ã, for which tr( r EÃ) 5 1. Thus the right-hand side of (4.56)
would always be the empty set, since this particular g would exist and violate

the strict inequality.12

Thus, the negation operation is essentially trivial if the category 2 is

used, and this might suggest employing 2
*

instead. On the other hand, if we

do keep the unit operator as a possible stage of truth, then the definition of

n r shows that the set of operators appearing as the domains of morphisms
in the sieve n r (A P D ) form an abelian algebra of operators. This is an

attractive feature, and might suggest that using 2 has certain advantages, too.

Note that the spin-1 example discussed earlier shows this effect very clearly:

the sets of operators {t1Ã1 rSÃ2x ) t, r P R } that appear in the right-hand sides

of (4.35) and (4.36) are both abelian subalgebras, but cease to be so if the

value r 5 0 is excluded, as would be the case if 2
*

is used as the category
of contexts.

A Generalization of the Valuations n r

Finally, we note in passing that there exists a one-parameter family of

extensions of our valuations n r . Namely, we define

n r, r (A P D ) : 5 { f2: BÃ® AÃ) Prob(B P f ( D ); r ) $ r}

5 { f2: BÃ® AÃ) tr( r EÃ[B P f ( D )]) $ r} (4.57)

where r is a real parameter satisfying 0 , r # 1. It is straightforward to

show that for all real numbers r in this range, n r, r satisfies all our defining
conditions for a generalized valuation, with the exception of exclusivity.

Exclusivity is also satisfied if the parameter r lies in the range 1±2 # r # 1.

This is an intriguing class of generalized valuation, because it seems to

promise a topos perspective on the probabilistic statements of quantum theory.

4.5. From Generalized Valuation to Partial Valuation and Back Again

As mentioned in the context of Theorem 4.3: in the case of operators

with a purely discrete spectrum, each generalized valuation n on propositions

leads to the valuation V n : S ® V on physical quantities defined in (4.23).

In particular, for the generalized valuation n r associated with a density matrix

r , we have

12 In fact, this is true of presheafs defined over any category # that has an initial object; i.e.,
an object I such that there is a morphism from I to every object in the category.
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V n r
A (a) 5 { f2d: BÃ® AÃ) tr( r EÃ[B 5 f (a)]) 5 1} (4.58)

Now consider the generalized valuation n c associated with a quantum

state c [as in (4.30)] in a situation where all the operators concerned have

a discrete spectrum only. The corresponding generalized valuation (4.58) on

physical quantities gives rise to a partial valuation, which we shall denote
V c , whose domain is defined as in (4.26); thus

dom V c 5 {BÃ) BÃc 5 b c for some b} (4.59)

and, of course, if BÃbelongs to the domain of V c , then V c (BÃ) : 5 b.
We can now apply Definition 3.4 to the partial valuation V c to get an

associated generalized valuation n V c
with

n V c
(A P D ) : 5 { f2d: BÃ® AÃ) $ b, BÃc 5 b c and b P f ( D )} (4.60)

which should be contrasted with the original definition of n c :

n c (A P D ) : 5 { f2: BÃ® AÃ) EÃ[B P f ( D )] c 5 c } (4.61)

The point we wish to emphasize is that the generalized valuations in

(4.60) and (4.61) assign the same truth-values to propositions of the type `A 5
a,’ but they differ in the way they treat more general propositions `A P D .’

Thus, the definition of n V c
in (4.60) shows that f2d: BÃ® AÃbelongs to

the sieve n V c (A P D ) if and only if (i) c is an eigenvector of BÃ5 f (AÃ) and

(ii) the corresponding eigenvalue b belongs to f ( D ), in other words, the

coarse-grained operator f (AÃ) has a value in the state c , and this value lies

in f ( D ). On the other hand, for f2d: BÃ® AÃto belong to the sieve n c (A P D )

requires only that c is some linear combination of such eigenstates of f (AÃ).
In particular, this proves our earlier remark that the chain in (4.28) is not the

identity transformation on generalized valuations.

4.6. The Generalized Valuation Produced by a Projection Operator

There is apparently another way of constructing generalized valuations

using the mathematical ingredients of quantum theory. To see this, we note

that the defining condition EÃ[B P f ( D )] c 5 c for n c (A P D ) [see equation

(4.30)] can be written as

EÃ[B P f ( D )] ) c & ^ c ) 5 ) c & ^ c ) EÃ[B P f ( D )] 5 ) c & ^ c ) (4.62)

where ) c & ^ c ) denotes the projector onto the vector c . The expression (4.62)
suggests an immediate generalization to

EÃ[B P f ( D )]PÃ5 PÃEÃ[B P f ( D )] 5 PÃ (4.63)

where PÃis now an arbitrary projection operator. In turn, this condition is

equivalent to the relation PÃ # EÃ[B P f ( D )] in the lattice of projection

operators. Hence we are led to the following definition:
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Definition 4.6. The generalized valuation n P associated with a projection

operator PÃis

n P(A P D ) : 5 { f2: BÃ® AÃ) PÃ# EÃ[B P f ( D )]} (4.64)

It is relatively straightforward to show that the necessary conditions for a

generalized valuation are satisfied; for reasons of space, we shall not go into

the details here. In fact, if PÃis a finite projector (i.e., its range is a finite-
dimensional subspace of the Hilbert space *), then n P is just a special case

of the density-matrix construction given above:

Theorem 4.4. If PÃis a projector such that dim PÃ5 n , ` , then for all

propositions `A P D ’

n P(A P D ) 5 n r P
(A P D ) (4.65)

where r P : 5 (1/n)PÃis the density matrix given by the projection operator PÃ.

Proof. If PÃ# EÃ[B P f ( D )], we have PÃEÃ[B P f ( D )] 5 PÃ, and hence

tr( r PEÃ[B P f ( D )]) 5 tr(1/n)PÃ5 1. Thus n P(A P D ) # n r P
(A P D ).

Conversely, suppose BÃis such that tr( r PEÃ[B P f ( D )]) 5 1. Then
tr(1/n)PÃ5 1 5 tr((1/n)PÃEÃ[B P f ( D )]), which implies at once that PÃ# EÃ[B P
f ( D )]. Therefore n r P

(A P D ) # n P(A P D ). Hence n r P
(A P D ) 5

n P(A P D ). QED

Thus nothing new is gained by introducing the valuations n P on a finite-
dimensional Hilbert space. However, if * has an infinite dimension, then n P

does give a new type of valuation provided that the projection operator PÃ

has an infinite range.

5. USING THE SET OF BOOLEAN SUBALGEBRAS AS THE
SPACE OF CONTEXTS

5.1. Preliminary Definitions

We remarked earlier on the existence of a number of isomorphic pairs

of objects in the category 2. This occurs whenever operators AÃand BÃare

related by BÃ5 f (AÃ) and AÃ5 g(BÃ) for some functions f : s (AÃ) ® R and g:

s (BÃ) ® R .

From a physical perspective, if we know the value of one member of

such a pair of physical quantities, then we automatically know the value of
the other, and vice versa. In this sense, the quantities are `physically equiva-

lent’ and in some circumstances it is natural to concentrate on the equivalence

classes rather than on the individual quantities themselves. In particular, since

the spectral Boolean algebras WA and WB of such pairs of operators are
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isomorphic, a unique Boolean algebra can be associated with each equivalence

class of physical quantities.

Viewed mathematically, this suggests moving toward a formalism in
which the space of contexts, or stages of truth, is the category 0 of all

Boolean subalgebras of the projection lattice, rather than the category 2 of

self-adjoint operators. Actually, we could have started ab initio with 0 as

the space of contexts, but we elected to use 2 instead since the physical

motivation for some of the mathematical constructions is more transparent

in this case; in particular, this is true of the coarse-graining operation. How-
ever, as we shall see in Sections 5.2 and 5.3, the use of 0 also suggests

generalizations of the idea of coarse graining which do not arise in such a

natural way if the category 2 is used. Another significant reason for studying

the use of 0 is that most of the discussion extends at once to the general

quantum logic situation in which all that is said of the basic mathematical

structure of a quantum theory is that the propositions are represented by
elements in an orthomodular, orthocomplemented lattice; however, we do

not take up this generalization here.

We start by constructing several important presheaf objects in the topos

Set0
op

. The dual presheaf D: 0op ® Set on 0 was introduced in Definition

2.3, with D(W ) defined to be the dual of the Boolean algebra W, i.e., the set
of homomorphisms from W to the Boolean algebra {0, 1}. In our case, we

are interested in a generalization of this situation in which the `homomor-

phisms’ from W take their values in the Heyting algebra V (W ) of sieves on

W in the category 0 rather than in {0, 1}. Furthermore, we must satisfy the

algebraic conditions that specify a generalized valuation. To formalize these

ideas we start with the following definition.

Definition 5.1. A valuation of a Boolean algebra B in a Heyting algebra

H is a map f : B ® H such that the following conditions are satisfied:

Null proposition condition: f (0B) 5 0H (5.1)

Monotonicity: a # b implies f ( a ) # f ( b ) (5.2)

Exclusivity: If a Ù b 5 0B and f ( a ) 5 1H , then f ( b ) , 1 (5.3)

The set of all valuations from B to H will be denoted Val(B, H ).

These have been chosen to be the analogues of the conditions that we

have used a number of times already, and, as before, we may also want to

add the unit condition:

Unit proposition condition: f (1B) 5 1H (5.4)

In this case when B is a Boolean subalgebra W P 0 and H is V (W ), the

elements of Val(W, V (W )) will be referred to as local valuations.
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We can now define a natural generalization of the dual presheaf D on

0 (see Definition 2.3) in which the standard dual of a Boolean algebra is

replaced with an V (W )-valued valuation.

Definition 5.2. The valuation presheaf of 0 is the contravariant functor

V: 0 ® Set defined as follows:

1. On objects in 0: V(W ) : 5 Val(W, V (W )), the set of local valuations

on W.

2. On morphisms in 0: If iW2W1: W2 ® W1 (i.e., W2 # W1), then

V(iW2W1): Val(W1, V (W1)) ® Val(W2, V (W2)) is defined by

[V(iW2W1)( f )]( a Ã) : 5 i*W2W1( f (iW2W1( a Ã))) (5.5)

Here f P Val(W1, V (W1)) and a ÃP W2, and in the poset category 0 we

have i*W2W1(S ) 5 ¯ W2 ù S for all S P V (W1) [cf. (A.13)].

It is interesting consider global elements of V for two reasons: (i) in

order to compare with the dual presheaf D, for which, as we saw in Section

2.3, global elements are ruled out by the Kochen±Specker theorem; and (ii)

in order to make a contrast with the definition of a generalized valuation in

Section 4.
A global element g of the valuation presheaf corresponds to a family

of local valuations g W P Val(W, V (W )), W P 0, such that, if W2 # W1,

then, for all a ÃP W2,

g W2( a Ã) 5 [V(iW2W1)( g W1)]( a Ã) 5 i*W2W1{ g W1(iW2W1( a Ã))} (5.6)

In order to see the potential application for such global elements, it is
instructive to study these equations in the special case where W1 5 WA and

W2 5 Wh(A) for some function h: s (AÃ) ® R . Thus, suppose that a Ãis the

projection operator EÃ[h(A) P L ] for some Borel subset L # s (h(AÃ)). Then

iWh(A)WA(EÃ[h(A) P L ]) 5 EÃ[A P h 2 1( L )] (5.7)

and hence the matching condition in (5.6) reads

g Wh(A)(EÃ[h(A) P L ]) 5 i*Wh(A)WA{ g WA(EÃ[A P h 2 1( L )])} (5.8)

In particular,

g Wh(A)(EÃ[h(A) P h( D )]) 5 i*Wh(A)WA{ g WA(EÃ[A P h 2 1(h( D ))])} (5.9)

The corresponding matching equation in Section 4 for the case of a
generalized valuation on 2 was [equation (4.5)]

n (h(A) P h( D )) 5 h*2 { n (A P D )} (5.10)

or, in explicit contextual form,
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n h(A)(EÃ[h(A) P h( D )]) 5 h*2 { n A(EÃ[A P D ])} (5.11)

Here it is very important to contrast equations (5.9) and (5.11). In equation

(5.11) the truth-value of the proposition `h(A) P h( D )’ in the context h(AÃ)
is equated with the pullback of the truth value of the finer proposition `A P
D ’ at stage AÃ, whereas in (5.9) it is equated with the pullback of the valuation

of the proposition `A P h 2 1(h( D )).’

However, in the lattice of projectors, the projectors EÃ[A P h 2 1(h( D ))]
and EÃ[h(A) P h( D )] are equal, so one is not pulling back a valuation of a

finer proposition. Indeed, this equality is reflected in (5.6), which guarantees

the consistency of (i) the sieve valuation of a given projector a ÃP W2, in the

context W2, with (ii) the sieve valuation of a Ãif W2 is embedded in the larger

Boolean algebra W1 and the valuation is then taken in the context of W1.
To sum up: The equality of EÃ[A P h 2 1(h( D ))] and EÃ[h(A) P h( D )] means

that if we were to define a generalized valuation to be a global section of

the valuation presheaf V, this would not be equivalent to our earlier Definition

4.1 or Definition 4.2 using the category 2.

Global sections of V could possibly be used to develop another topos

semantics for quantum theoryÐ certainly, we would not wish to claim that
the approach adopted in the present paper is necessarily the only one. The

first step would be to show that global sections of V actually exist, preferably

by finding concrete examples in analogy to, for example, the quantum-state

induced general valuations n r discussed earlier.

We may return in a later paper to the possible use of V in the semantics

of quantum theory, but for the remainder of this section we shall concentrate
on showing how the analogue of the coarse-graining operationÐ which played

a central role in our definition of a generalized valuation on 2Ð can be

introduced into the mathematical framework based on 0.

5.2. The Motivation for the Coarse-Graining Axioms

Motivated by what we did using the category 2, we wish to define a

coarse-graining operation from W1 to W2 where W1 and W2 are Boolean

subalgebras of projectors with W2 # W1. This is intended to play an analogous

role to that of the coarse-graining functor G: 2op ® Set, where the map
G( f2): WA ® WB, with BÃ5 f (AÃ), was defined in (4.16) to map the projector

EÃ[A P D ] to EÃ[ f (A) P f ( D )].

The procedure we shall follow is to extract certain key properties of the

coarse-graining process in 2 in this section, and then in Section 5.3 use these

as the basis for an axiomatization of an analogous procedure for 0.

5.2.1. Coarse Graining

The first step is to express more precisely the coarse-graining property

itself. We start by recalling that, in the lattice of projection operators,
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EÃ[A P D ] # EÃ[ f (A) P f ( D )] (5.12)

However, if we wish to think of the operators on the left- and right-hand

sides of (5.12) as elements of the Boolean subalgebras WA and W f (A), respec-

tively, then it pays to be pedantic by rewriting (5.12) as

EÃ[A P D ] # iW f (A)WA(EÃ[ f (A) P f ( D )]) (5.13)

where iWf (A)WA: W f (A) ® WA is the embedding of the Boolean algebra W f (A) in

WA . In this sense, the precise statement of the coarse-graining property is

EÃ[A P D ] # iWf (A)WA(G( f2)(EÃ[A P D ])) (5.14)

where the partial ordering ` # ’ takes place in the Boolean algebra WA . The
analogue of this expression will play a key role in what follows.

5.2.2. The Retraction Property

Considered as an element of WA , the spectral projector EÃ[ f (A) P J ] is

E[A P f 2 1(J )]; more precisely,

iW f (A)WA(EÃ[ f (A) P J ]) 5 EÃ[A P f 2 1(J )] (5.15)

and hence

G( f2) + iW f (A)WA(EÃ[ f (A) P J]) 5 EÃ[ f (A) P f ( f 2 1(J ))] (5.16)

However, using the definition in (4.2), it is easy to show that the right hand

side of (5.16) is equal to EÃ[ f (A) P J ]. Hence, (5.16) becomes, for all Borel

subsets J # s ( f (AÃ)),

G( f2) + iWf (A)WA(EÃ[ f (A) P J ]) 5 EÃ[ f (A) P J ] (5.17)

which can be rewritten succinctly as

G( f2) + iW f (A)WA 5 idWf (A) (5.18)

This is expressed by saying that G( f2): WA ® W f (A) is a retraction13 map

from WA onto its embedded subalgebra Wf (A).

5.2.3. Composition Conditions

Since G is a contravariant functor from 2 to Set, it follows that if h2:

CÃ® BÃand f2: BÃ® AÃ, then f2 + h2: CÃ® AÃ, and

13 In general, a map r: Y ® X is a retraction of a subset embedding i: X # Y if r(x) 5 x for
all x P X # Y; X is then said to be a retract of Y. Formally, we can write this as r + i 5 idX .



A Topos Perspective on Kochen ± Specker Theorem 2719

G( f2 + h2) 5 G(h2) + G( f2) (5.19)

These can be thought of as the `composition conditions’ that must be satisfied

by a coarse-graining operation.

5.2.4. Monotonicity

If D 1 # D 2, then f ( D 1) # f ( D 2), and hence EÃ[ f (A) P f ( D 1)] # EÃ[ f (A)

P f ( D 2)]. From this we deduce the monotonicity condition that is satisfied

by the coarse-graining presheaf G. Namely, if D 1 # D 2, then

G( f2)(EÃ[A P D 1]) # G( f2)(EÃ[A P D 2]) (5.20)

Note that the partial-ordering operation ` # ’ in (5.20) is taken in the Boolean

algebra W f (A).

5.3. The Definition of Coarse Graining on 0

5.3.1. A Coarse-Graining Presheaf on 0

Motivated by the above we can now give our formal definition of a

`coarse-graining’ operation on the category 0.

Definition 5.3. A coarse-graining on 0 is an operation that associates
to each pair W2 # W1 a `coarse-graining’ map u W1W2: W1 ® W2 with the

following properties:

1. Composition conditions: If W3 # W2 # W1, then

u W2W3 + u W1W2 5 u W1W3 (5.21)

2. Coarse-graining: For all a ÃP W1,

a Ã# iW2W1( u W1W2( a Ã)) (5.22)

If W2 5 W1, then u W1W1 5 idW1.

3. Retraction: For all a ÃP W2,

u W1W2(iW2W1( a Ã)) 5 a Ã (5.23)

Thus u W1W2 is a retraction of W2 onto W1, i.e., u W1W2 + iW2W1 5 idW2.

4. Monotonicity: If a Ã, b ÃP W1 are such that a # b , then

u W1W2( a Ã) # u W1W2( b Ã) (5.24)

From a topos perspective, the composition conditions show that u defines

a presheaf U : 0op ® Set that is defined (i) on objects as U (W ) : 5 W, and

(ii) on a morphism iW2W1: W2 ® W1 as U (iW2W1) : 5 u W1W2. Conversely, we

could define a `coarse-graining presheaf on W ’ to be a presheaf on W that



2720 Isham and Butterfield

satisfies the remaining conditions, viz. coarse-graining, retraction, and

monotonicity.

5.3.2. The Canonical Coarse-Graining Presheaf

It is important to show that there exists at least one coarse-graining

presheaf. In the analogous case of contextualizing over 2, there was a `canoni-

cal’ coarse-graining operation that came from considering the implications

of writing one operator BÃas a function f (AÃ) of another. The key to finding
the analogue of this construction for the category 0 is contained in Theorem

4.1. This result leads naturally to the following definition:

Definition 5.4. The canonical coarse-graining of 0 associates to each

pair W2 # W1 the coarse-graining map f W1W2: W1 ® W2 defined by

f W1W2( a Ã) : 5 inf{ b ÃP W2 ) a Ã# iW2W1( b Ã)} (5.25)

for all a ÃP W1.

We shall leave as a straightforward exercise the task of showing that

the entity thus defined really does satisfy all the requirements for a coarse-

graining operation.

5.3.3. Generalized Valuations Associated with a Coarse-Graining
Presheaf

We shall now show that for any given coarse-graining presheaf, there

is an associated definition of a generalized valuation that is constructed as

a matching family of local valuations:

Definition 5.5. A generalized valuation on 0 associated with a coarse-

graining presheaf U is a family of local valuations f W: W ® V (W ), W P
0, such that if W2 # W1, then, for all a ÃP W1,

f W2( u W1W2( a Ã)) 5 i*W2W1( f W1( a Ã)) (5.26)

From a physical perspective, the interpretation of a generalized

valuation on 0 is closely analogous to that of a generalized valuation

on 2 as given by the discussion following Definition 4.1. Specifically,

although a particular projector a Ã P W1 may not be assigned the value

`totally true’ at a stage of truth W1, it does have a partial truth-value that

is given by the set of coarser Boolean algebras W2 that belong to the
sieve f W1( a Ã), where, on account (5.26), each corresponding coarse-grained

projector u W1W2( a Ã) is given the value `totally true’ at the corresponding

stage of truth W2. [This should be compared with the discussion following

(A.12), and after (3.15).]
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5.3.4. The Generalized Valuation Produced by a Density Matrix

There is no difficulty in finding examples of generalized valuations

associated with any coarse-graining presheaf. In particular, each density-

matrix state r produces one according to the following definition.

Definition 5.6. The generalized valuation n r on 0 associated with a

coarse-graining presheaf U and a density matrix r is defined at each stage

W by

n r
W( a Ã) : 5 {W 8 # W ) tr( r u WW 8( a Ã)) 5 1} (5.27)

for all a ÃP W.

To show that this is indeed a generalized valuation it is necessary to
show that (i) each n r

W: W ® V (W ) is a local valuation and (iii) the maps

n r
W fit together in the way indicated by the intertwining condition in (5.26).

The proofs are contained in the following theorem.

Theorem 5.1. The quantity n r defined in (5.27) satisfies all the conditions

for a generalized valuation on 0.

Proof. A. For each stage W P 0, n r
W is a local valuation.

5.3.4.1. n r
W( a Ã) is a Sieve. The first step is to show that n r

W( a Ã) is a sieve
on W in 0. Thus suppose that W 8 P n r

W( a Ã) and consider any subalgebra W 9
# W 8. The composition condition (5.21) applied to the chain W 9 # W 8 #
W gives

u WW 9( a Ã) 5 u W 8W 9( u WW 8( a Ã)) (5.28)

for all a ÃP W. Then applying the coarse-graining condition (5.22) to u WW 8( a Ã)
and using (5.28), we get

u WW 8( a Ã) # iW 9W 8( u W 8W 9( u WW 8( a Ã))) 5 iW 9W 8( u WW 9( a Ã)) (5.29)

Hence, in the Boolean algebra W 8 we have u WW 8( a Ã) # u WW 9( a Ã). Thus, in

particular, tr( r u WW 8( a Ã)) 5 1 implies tr( r u WW 9( a Ã)) 5 1; and hence n r
W( a Ã) is a

sieve on W in 0.

5.3.4.2. The Null Proposition Condition. The equations (5.23) and

iW 8W(0W 8) 5 0W imply u WW 8(0Ã) 5 0Ã, from which the null proposition condition

follows at once. It is also trivial to check that n r satisfies the unit proposition

condition n r
W(1Ã) 5 trueW .

5.3.4.3. The Monotonicity Condition. To show monotonicity, suppose

that a Ã, b ÃP W satisfy a Ã# b Ã, and that W 8 P n r
W( a Ã), so that tr( r u WW 8( a Ã)) 5

1. Then the monotonicity condition (5.24) obeyed by the coarse-graining
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operation implies that u WW 8( a Ã) # u WW 8( b Ã), and hence that tr( r u WW 8( a Ã)) #
tr( r u WW 8( b Ã)). However, tr( r PÃ) # 1 for all projection operators PÃ, and hence

tr( r u WW 8( a Ã)) 5 1 implies tr( r u WW 8( b Ã)) 5 1, which means that W 8 P
n r

W ( b ); hence the monotonicity condition is satisfied.

5.3.4.4. The Exclusivity Condition. To show exclusivity, suppose that

a Ã, b ÃP W satisfy a ÃÙ b Ã5 0, and that n r
W ( a Ã) : 5 1W . The latter implies that

W P n r
W ( a Ã), and hence, since u WW 5 idW , we have tr( r a Ã) 5 1. However,

a ÃÙ b Ã5 0 implies that b Ã# Ø a Ãand, since Ø a Ã5 1Ã2 a Ã, we get

0 # tr( r b Ã) # tr( r (1Ã2 a Ã)) 5 0 (5.30)

Thus tr( r b Ã) 5 0, and hence W ¸ n r
W ( b Ã). Therefore, n r

W ( b Ã) , 1W , which

proves exclusivity.

B. For each stage W P 0, n r satisfies the intertwining condition (5.26).

To see that (5.26) is satisfied, let W2, W1 P 0 be such that W2 # W1. Then,

for all a ÃP W1,

n r
W2( u W1W2( a Ã)) : 5 {W 8 # W2 ) tr( r u W2W 8( u W1W2( a Ã))) 5 1}

5 {W 8 # W2 ) tr( r u W1W 8( a Ã)) 5 1} (5.31)

where the last line follows from the composition conditions (5.21). On the

other hand,

{W 8 # W2 ) tr( r u W1W 8( a Ã)) 5 1} 5 ¯ W2 ù {W 8 # W1 ) tr( r u W1W 8( a Ã)) 5 1}

5 i*W2W1( n
r
W1( a Ã)) (5.32)

so that n W2( u W1W2( a Ã)) 5 i*W2W1( n W1( a Ã)), as required. QED

5.3.4.5. The Topos-Theoretic Perspective. From a topos-theoretic per-

spective we note that each generalized valuation n on 0 defines a natural

transformation N n between the coarse-graining presheaf U and the subobject

classifier V , in which, at each stage of truth W, N n
W : U (W ) ® V (W ) is

defined by N n
W ( a Ã) : 5 n W ( a Ã). It is a straightforward exercise in diagram

chasing to show that N n really is a natural transformation.
Thus to each generalized valuation n on 0 there corresponds a morphism

in the topos Set0op
between the coarse-graining presheaf U and the subobject

classifier. In particular, therefore, each generalized valuation on 0 corres-

ponds to a subobject of U . The overall implications of this are the same as

for the analogous result in the case of generalized valuations defined on 2.

6. CONCLUSION

The Kochen±Specker theorem shows the nonexistence of global valua-

tions on the self-adjoint operators in a quantum theory if the dimension of
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the underlying Hilbert space * is greater than two. We have shown that this

theorem is equivalent to the statement that a certain presheaf on the category

of bounded self-adjoint operators has no global sections. Then, motivated by
the underlying topos structure, we introduced a new type of valuation which

is globally defined, but whose truth values (i) are contextual and (ii) lie

in a larger Heyting algebra than the minimal {0, 1} Boolean algebra of

standard logic.

Thus our construction shows clearly how contextual features enter into

a `neorealist’ interpretation of quantum theory. It also shows that the use of
multivalued logic is perfectly feasible. In particular, there is no ambiguity

or uncertainty about what the logical connectives are: the Heyting algebra

of the sieves at any particular stage of truth, or context, is precisely fixed

by the structure of the base categoryÐ in our case 2 or 0Ð on which the

relevant presheaves are defined.

As we emphasized at the end of the Introduction, the main aim of the
present paper is to provide the main mathematical tools and some of the

general ideas involved in the application of topos ideas in quantum theory.

Much remains to be done to develop both the mathematical and the conceptual

implications of these ideas; the latter in particular are discussed in a forthcom-

ing paper (Butterfield and Isham, 1998).
At the mathematical level, the work reported in this paper suggests a

number of topics for further research. Of particular importance is the study

of the space of all generalized valuations, which, as mentioned in Section

4.2, might carry an intuitionistic logical structure by virtue of the identification

of each generalized valuation with a subobject of the coarse-graining presheaf

G. An important part of any such study is likely to involve a closer investiga-
tion of the negation operation in the Heyting algebras, which we have not

exploited in any significant way so far.

A crucial question regarding the space of all generalized valuations is

to understand the mathematical status of the valuations n r generated by the

mixed states r in the quantum system. In particular, if we impose the `unit

proposition condition’ of (3.28), is it possible to find a set of extra conditions
to be imposed on the generalized valuations that will guarantee that every
subobject of G that satisfies these and the original defining conditions equa-

tions (4.6)±(4.8) has the form n r for some density matrix r ? In effect, we are

asking for a contextualized, Heyting-algebra-valued analogue of the Gleason

theorem. It seems likely that an important role in such an analysis will be

played by the one-parameter family of generalized valuations of n r, r defined
in (4.57).

A number of other questions suggest themselves. For example, is our

theory of generalized values of physical quantities and propositions related

at all to existing ideas on `unsharp’ values of quantum quantities [as described,
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for example, in Busch et al. (1996)]? Another important example is the

relation of our constructions to the standard probabilistic statements of quan-

tum theory.
Another important issue is to see how the phenomenon of quantum

entanglement is reflected in the truth-values assigned by our generalized

valuations. Thus we should study possible relations between a generalized

valuation n c , where c is an entangled state in a tensor product *1 ^ *2,

and the generalized valuations associated with vectors in the constituent

Hilbert spaces *1 and *2.
The discussion in Section 5.3 of coarse-graining in the category 0 of

Boolean subalgebras implies that there might be coarse-graining functors

other than the canonical one given in Definition 5.4. It is clearly important

to see if this is indeed the case, since each such functor would give rise to

a whole new class of generalized valuations. In particular, this is relevant to

the problem mentioned above of classifying generalized valuations. It would
also be interesting to study this question in a simple model quantum-logic

situation in which the orthoalgebra of propositions is not the projection lattice

of a Hilbert space.

Finally, there is the question of the Kochen±Specker theorem itself: in

particular, the possibility of finding a new proof based on some theory of
obstructions to the construction of global sections of the spectral presheaf,

rather as one studies obstructions to the construction of global cross sections

of nontrivial fiber bundles. This is an intriguing mathematical challenge,

and one whose solution could generate a deeper insight into the ultimate

significance of the Kochen±Specker theorem. It could also suggest ways of

using topos ideas in quantum theory other than the coarse-graining scheme
employed in the present paper.

APPENDIX A. A BRIEF ACCOUNT OF THE RELEVANT PARTS
OF TOPOS THEORY

A.1. Presheaves on a Poset

Topos theory is a remarkably rich branch of mathematics which can be

approached from a variety of different viewpoints. The relevant general area

of mathematics is category theory, where, we recall, a category consists of

a collection of objects and a collection of morphisms (or arrows). In the
special case of the category of sets, the objects are sets, and a morphism is

a function between a pair of sets. In general, each morphism f in a category

is associated with a pair of objects, known as its `domain’ and the `codomain,’

and is written in the form f : B ® A, where B and A are the domain and
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codomain, respectively. Note that this arrow notation is used even if f is not

a function in the normal set-theoretic sense. A key ingredient in the definition

of a category is that if f : B ® A and g: C ® B (i.e., the codomain of g is

equal to the domain of f ), then f and g can be `composed’ to give an arrow

f + g: C ® A; in the case of the category of sets, this is just the usual

composition of functions.

In many categories, the objects are sets equipped with some type of

additional structure, and the morphisms are functions that preserve this struc-

ture; for example, in the category of groups, an object is a group, and a

morphism f : G1 ® G2 is a map from the group G1 to the group G2 that is

also a homomorphism. However, not all categories are of this type. For

example, any partially ordered set (`poset’ ) # can be regarded as a category

in which (i) the objects are defined to be the elements of # and (ii) if p, q P
#, a morphism from p to q is defined to exist if and only if p # q in the

poset structure. Thus, in a poset regarded as a category, there is at most one

morphism between any pair of objects p, q P #; if it exists, we shall write

this morphism as ipq: p ® q.

From our perspective, the most relevant feature of a topos is that it is

a category in which the subobjects of an object behave in many ways like

the subsets of a set in set theory (Goldblatt, 1984; MacLane and Moerdijk,

1992). In particular, the subsets K # X of a set X are in one-to-one correspon-

dence with functions x K: X ® {0, 1}, where x K(x) 5 1 if x P K, and x K(x)

5 0 otherwise. Thus the target space {0, 1} can be regarded as the simplest

`false±true’ Boolean algebra, and the proposition `x P K’ is true if x K(x) 5
1, and false otherwise.

In the case of a topos, the subobjects K of an object X in the topos are

in one-to-one correspondence with morphisms x K: X ® V , where the special

object V in the topos, called the `subobject classifier’ or `object of truth-

values,’ plays an analogous role to that of {0, 1} in the category of sets. In

particular, we are interested in the theory of presheaves where, as we shall

see, a morphism x K: X ® V corresponds to a contextualized, multivalued

truth assignment.

To illustrate the main ideas, we will first give a few definitions from

the theory of presheaves on a partially ordered set (or `poset’ ); physically,

this poset will represent the space of `contexts’ in which generalized truth-

values are to be assigned. We shall then use these ideas to motivate the

definition of a presheaf on a general category. Only the briefest of treatments

is given here, and the reader is referred to the standard literature for more

information (Goldblatt, 1984; MacLane and Moerdijk, 1992).

A presheaf (also known as a varying set) X on a poset # is a function

that assigns to each p P # a set Xp, and to each pair p # q a map Xqp: Xq ®
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Xp such that (i) Xpp: Xp ® Xp is the identity map idXp on Xp, and (ii) whenever

p # q # r, the composite map Xr ®
Xrq

Xq ®
Xqp

Xp is equal to Xr ®
Xrp

Xp, so that14

Xrp 5 Xqp + Xrq (A.1)

A morphism h : X ® Y between two presheaves X, Y on # is a family

of maps h p: Xp ® Yp, p P #, that satisfy the intertwining conditions

h p + Xqp 5 Yqp + h q (A.2)

whenever p # q. This is equivalent to the commutative diagram

Xqp
Xq Ð Ð ® Xp

½ h q
½ h p (A.3)

¯ ¯
Yqp YpYq Ð Ð ®

A subobject of a presheaf X is a presheaf K with a morphism i: K ®
X such that (i) Kp # Xp for all p P # and (ii) for all p # q, the map Kqp:
Kq ® Kp is the restriction of Xqp: Xq ® Xp to the subset Kq # Xq. This is

shown in the commutative diagram

Kqp
Kq Ð Ð ® Kp

½ ½ (A.4)
¯ ¯

Xqp XpXq Ð Ð ®

where the vertical arrows are subset inclusions.
The collection of all presheaves on a poset # forms a category, denoted

Set#
op

. The morphisms between presheaves in this category are defined as

the morphisms above.

A.2. Presheaves on a General Category

The ideas sketched above admit an immediate generalization to the

theory of presheaves on an arbitrary `small’ category # (the qualification

`small’ means that the collection of objects is a genuine set, as is the collection

of all morphisms between any pair of objects). To make the necessary defini-

tion we first need the idea of a `functor’ :

14 A matter of convention is involved here. Sometimes a presheaf is defined as above except
that, to each p # q, one associates a function Xpq: Xp ® Xq that maps Xp to Xq, rather than
the function Xqp that maps Xq to Xp. To reflect this, equation (A.1) is replaced by Xpr 5 Xqr +
Xpq for p # q # r. Presheaves in the sense of the main text are in one-to-one correspondence
with presheaves in this alternative sense, in which the latter are defined on the opposite poset
#op Ð defined to be the same set as #, but with all the partial ordering relations reversed.
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A.2.1. The Idea of a Functor

A central concept is that of a `functor’ between a pair of categories #
and $. Broadly speaking, this is a morphism-preserving function from one

category to the other. The precise definition is as follows.

Definition A.1:
1. A covariant functor F from a category # to a category $ is a function

that assigns (a) to each #-object A, a $-object F(A); (b) to each #-morphism

f : B ® A, a $-morphism F( f ): F(B) ® F(A) such that F(idA) 5 idF(A); and,

if g: C ® B and f : B ® A, then

F( f + g) 5 F( f ) + F(g) (A.5)

2. A contravariant functor X from a category # to a category $ is a

function that assigns (a) to each #-object A, a $-object X(A); (b) to each
#-morphism f : B ® A, a $-morphism X( f ): X(A) ® X(B) such that X(idA)

5 idX(A); and, if g: C ® B and f : B ® A, then

X( f + g) 5 X(g) + X( f ) (A.6)

The connection with the idea of a presheaf on a poset is straightforward.

As mentioned above, a poset # can be regarded as a category in its own

right, and it is clear that a presheaf on the poset # is the same thing as a

contravariant functor X from the category # to the category `Set’ of normal

sets. Equivalently, it is a covariant functor from the `opposite’ category15 #op

to Set. More precisely, in terms of the notation used earlier, the sets Xp, p P
#, are defined as

Xp : 5 X( p) (A.7)

and, if p # q (so that ipq: p ® q), the map Xqp: Xq ® Xp is defined as

Xqp : 5 X(ipq) (A.8)

Clearly, (A.1) corresponds to the contravariant condition (A.6).

A.2.2. Presheaves on an Arbitrary Category #

These remarks motivate the definition of a presheaf on an arbitrary small

category #: namely, a presheaf on # is a covariant functor X: #op ® Set

from #op to the category of sets. Equivalently, a presheaf is a contravariant
functor from # to the category of sets.

15 The `opposite’ of a category # is a category, denoted #op, whose objects are the same as
those of #, and whose morphism are defined to be the opposite of those of #, i.e., a morphism
f : A ® B in #op is said to exist if and only if there is a morphism f : B ® A in #.
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We want to make the collection of presheaves on # into a category, and

therefore we need to define what is meant by a `morphism’ between two

presheaves X and Y. The intuitive idea is that such a morphism from X to
Y must give a `picture’ of X within Y. Formally, such a morphism is defined

to be a natural transformation N: X ® Y, by which is meant a family of

maps (called the components of N ) NA: X(A) ® Y(A), A in #, such that if

f : B ® A is a morphism in #, then the composite map X(A) ®
NA

Y(A) ®
Y( f )

Y(B) is equal to X(A) ®
X( f )

X(B) ®
NB

Y(B). In other words, we have the

commutative diagram

X( f )
X(A) Ð Ð ® X(B)

½ NA
½ NB (A.9)

¯ ¯
Y( f )

Y(B)Y(A) Ð Ð ®

of which (A.3) is clearly a special case. The category of presheaves on #
equipped with these morphisms is denoted Set#op

.
The idea of a subobject generalizes in an obvious way. Thus we say

that K is a subobject of X if there is a morphism in the category of presheaves

(i.e., a natural transformation) i: K ® X with the property that, for each A,

the component map iA: K(A) ® X(A) is a subset embedding, i.e., K(A) #
X(A). Thus, if f : B ® A is any morphism in #, we get the analogue of the

commutative diagram (A.4):

K( f )
K(A) Ð Ð ® K(B)

½ ½ (A.10)
¯ ¯

X( f )
X(A) Ð Ð ® X(B)

where, once again, the vertical arrows are subset inclusions.

The category of presheaves on #, Set#
op

, forms a topos. We do not need

the full definition of a topos; but we do need the idea, mentioned in Section
A.1, that a topos has a subobject classifier V , to which we now turn.

A.2.3. Sieves and the Subobject Classifier V

Among the key concepts in presheaf theory, and something of particular

importance for this paper, is that of a `sieve,’ which plays a central role in
the construction of the subobject classifier in the topos of presheafs on a

category #.

A sieve on an object A in # is defined to be a collection S of morphisms

f : B ® A in # with the property that if f : B ® A belongs to S and if g: C ®
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B is any morphism, then f + g: C ® A also belongs to S.16 In the simple case

where # is a poset, a sieve on p P # is any subset S of # such that if r P
S, then (i) r # p and (ii) r 8 P S for all r 8 # r; in other words, a sieve is
nothing but a lower set in the poset.

The presheaf V : # ® Set is now defined as follows. If A is an object

in #, then V (A) is defined to be the set of all sieves on A; and if f : B ® A,

then V ( f ): V (A) ® V (B) is defined as

V ( f )(S ) : 5 {h: C ® B ) f + h P S} (A.11)

for all S P V (A); the sieve V ( f )(S ) is often written as f *(S ), and is known

as the pullback to B of the sieve S on A by the morphism f : B ® A.

For our purposes in what follows, it is important to note that if S is a
sieve on A, and if f : B ® A belongs to S, then from the defining property

of a sieve we have

f *(S ) : 5 {h: C ® B ) f + h P S} 5 {h: C ® B} 5 : ¯ B (A.12)

where ¯ B denotes the principal sieve on B, defined to be the set of all

morphisms in # whose codomain is B. In words, the pullback of any sieve

on A by a morphism from B to A that belongs to the sieve is the principal
sieve on B.

If # is a poset, the pullback operation corresponds to a family of maps
V qp: V q ® V p (where V p denotes the set of all sieves on p in the poset)

defined by V qp 5 V (ipq) if ipq: p ® q (i.e., p # q). It is straightforward to

check that if S P V q, then

V qp(S ) : 5 ¯ p ù S (A.13)

where ¯ p : 5 {r P # ) r # p}.

A crucial property of sieves is that the set V (A) of sieves on A has the

structure of a Heyting algebra.17 This is defined to be a distributive lattice,

with null and unit elements, that is relatively complemented, which means
that to any pair S1, S2 in V (A), there exists an element S1 Þ S2 of V (A) with

the property that, for all S P V (A),

S # (S1 Þ S2) if and only if S Ù S1 # S2 (A.14)

Specifically, V (A) is a Heyting algebra where the unit element 1 V (A) in V (A)

is the principal sieve ¯ A, and the null element 0 V (A) is the empty sieve 0/ .

16 A cosieve on A is defined to be a collection S of morphisms f : A ® B with the property that
if f : A ® B belongs to S, and if g: B ® C is any morphism, then g + f : A ® C also belongs
to S. However, another matter of convention is involved here: some authors interchange our
usage of the words `sieve’ and `cosieve.’ Note that, in any event, a sieve in # is the same
thing as a cosieve in #op, and vice versa.

17 The paradigmatic example of a Heyting algebra is the set of all open sets in a topological
space Z. The algebraic operations are defined as O1 Ù O2 : 5 O1 ù O2, O1 Ú O2 : 5 O1 ø
O2, and Ø O : 5 int(Z 2 O).
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The partial ordering in V (A) is defined by S1 # S2 if and only if S1 # S2;

and the logical connectives are defined as

S1 Ù S2 : 5 S1 ù S2 (A.15)

S1 Ú S2 : 5 S1 ø S2 (A.16)

S1 Þ S2 : 5 { f : B ® A ) for all g: C ® B if f + g P S1, then f + g P S2}

(A.17)

As in any Heyting algebra, the negation of an element S (called the pseudo-
complement of S ) is defined as Ø S : 5 S Þ 0, so that

Ø S : 5 { f : B ® A ) for all g: C ® B, f + g ¸ S} (A.18)

The main distinction between a Heyting algebra and a Boolean algebra is
that in the former the negation operation does not necessarily obey the law

of excluded middle: instead, all that be can said is that, for any element S,

S Ú Ø S # 1 (A.19)

It can be shown that the presheaf V is a subobject classifier for the

topos Set#
op

. That is to say, subobjects of any object X in this topos (i.e.,

any presheaf on #) are in one-to-one correspondence with morphisms x : X
® V . This works as follows. First, let K be a subobject of X. Then there

is an associated characteristic morphism x K: X ® V , whose `component’

x K
A : X(A) ® V (A) at each `stage of truth’ A in # is defined as

x K
A (x) : 5 { f : B ® A ) X( f )(x) P K(B)} (A.20)

for all x P X(A). That the right-hand side of (A.20) actually is a sieve on A
follows from the defining properties of a subobject.

Thus, in each `branch’ of the category # going `down’ from the stage

A, x K
A (x) picks out the first member B in that branch for which X( f )(x) lies

in the subset K(B), and the commutative diagram (A.10) then guarantees that

X(h + f )(x) will lie in K(C) for all h: C ® B. Thus each stage of truth A in

# serves as a possible context for an assignment to each x P X(A) of a

generalized truth-value, which is a sieve, belonging to the Heyting algebra

V (A), rather than an element of the Boolean algebra {0, 1} of normal set

theory. This is the sense in which contextual, generalized truth-values arise
naturally in a topos of presheaves.

There is a converse to (A.20): namely, each morphism x : X ® V (i.e.,

a natural transformation between the presheaves X and V ) defines a subobject

K x of X via

K x (A) : 5 x 2 1
A {1 V (A)} (A.21)

at each stage of truth A.
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For this reason, the presheaf V is known as the subobject classifier in

the category Set#op
. As mentioned above, the existence of such an object is

one of the defining properties for a category to be a topos, which Set#
op

is.

A.2.4. Global Sections of a Presheaf

In any category, a terminal object is defined to be an object 1 with the

property that, for any object X in the category, there is a unique morphism

X ® 1; it is easy to show that terminal objects are unique up to isomorphism.
A global element of an object X is then defined to be any morphism 1 ®
X. The motivation for this nomenclature is that, in the case of the category

of sets, a terminal object is any singleton set { * }; and then it is true that

there is a one-to-one correspondence between the elements of a set X and

functions from { * } to X.

For the category of presheaves on #, a terminal object 1: # ® Set can
be defined by 1(A) : 5 { * } at all stages A in #; if f : B ® A is a morphism

in #, then 1( f ): { * } ® { * } is defined to be the map * j * . This is indeed

a terminal object since, for any presheaf X, we can define a unique natural

transformation N: X ® 1 whose components NA: X(A) ® 1(A) 5 { * } are

the constant maps x j * for all x P X(A).

A global element of a presheaf X is also called a global section. As a
morphism g : 1 ® X in the topos Set#op

, a global section corresponds to a

choice of an element g A P X(A) for each stage of truth A in # such that, if

f : B ® A, the `matching condition’

X( f )( g A) 5 g B (A.22)

is satisfied. As we shall see, the Kochen±Specker theorem can be read as
asserting the nonexistence of any global sections of certain presheaves that

arises naturally in any quantum theory.

A.2.5. Local Sections of a Presheaf

One of the important properties of a general topos category is that an
object may have `partial’ or `local’ elements even if there are no global ones.

In general, a local element of an object X in a category with a terminal object

is defined to be a morphism U ® X, where U is a subobject of the terminal

object 1. In the category of sets, there are no nontrivial subobjects of 1 : 5
{ * }, but this is not the case in a general topos.

In particular, in the case of presheaves on #, a subobject U of 1 is a
collection of subsets U(A) # { * }, A in #, that satisfy the appropriate form

of the commutative diagram (A.10) that describes a subobject. However, the

only subsets of { * } are { * } itself and the empty set 0/ . Furthermore, there is

a unique function 0/ ® { * } (the `empty’ function), but no function { * } ®
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0/ . It follows, therefore, that in assigning the sets 0/ or { * } to each stage A
for a subobject U of 1, the assignments of the singleton sets { * } must be

`closed downward’ in the sense that if U(A) 5 { * } and if f : B ® A is a
morphism in #, then we must have U(B) 5 { * } also.

We deduce from this that a partial element of a presheaf X is an assign-

ment g of an element g A to a certain subset of objects A in #Ð what we

shall call the domain dom g of g Ð with the properties that (i) the domain

is closed downward in the sense that if A P dom g and f : B ® A, then B
P dom g , and (ii) for objects in this domain, the matching condition (A.22)
is satisfied.
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